采用自动微分进行模型的训练
自动微分训练模型
简单代码实现:
import torch
import torch.nn as nn
import torch.optim as optim# 定义一个简单的线性回归模型
class LinearRegression(nn.Module):def __init__(self):super(LinearRegression, self).__init__()self.linear = nn.Linear(1, 1) # 输入维度是1,输出维度也是1def forward(self, x):return self.linear(x)# 准备训练数据
x_train = torch.tensor([[1.0], [2.0], [3.0]])
y_train = torch.tensor([[2.0], [4.0], [6.0]])# 实例化模型、损失函数和优化器
model = LinearRegression()
criterion = nn.MSELoss() # 均方误差损失函数
optimizer = optim.SGD(model.parameters(), lr=0.01) # 随机梯度下降优化器# 训练模型
epochs = 1000
for epoch in range(epochs):# 前向传播outputs = model(x_train)loss = criterion(outputs, y_train)# 反向传播optimizer.zero_grad() # 清空之前的梯度loss.backward() # 自动计算梯度optimizer.step() # 更新模型参数if (epoch+1) % 100 == 0:print(f'Epoch [{epoch+1}/{epochs}], Loss: {loss.item():.4f}')# 测试模型
x_test = torch.tensor([[4.0]])
predicted = model(x_test)
print(f'预测值: {predicted.item():.4f}')
代码分解:
1.定义一个简单的线性回归模型:
LinearRegression
类继承自nn.Module
,这是所有神经网络模型的基类。- 在
__init__
方法中,定义了一个线性层self.linear
,它的输入维度是1,输出维度也是1。 forward
方法定义了数据在模型中的传播路径,即输入x
经过self.linear
层后得到输出。class LinearRegression(nn.Module):def __init__(self):super(LinearRegression, self).__init__()self.linear = nn.Linear(1, 1) # 输入维度是1,输出维度也是1def forward(self, x):return self.linear(x)
2.准备训练数据:
x_train
和y_train
分别是输入和目标输出的训练数据。每个张量表示一个样本,x_train
中的每个元素是一个维度为1的张量,因为模型的输入维度是1。x_train = torch.tensor([[1.0], [2.0], [3.0]]) y_train = torch.tensor([[2.0], [4.0], [6.0]])
3.实例化模型,损失函数和优化器:
model
是我们定义的LinearRegression
类的一个实例,即我们要训练的线性回归模型。criterion
是损失函数,这里选择了均方误差损失(MSE Loss),用于衡量预测值与实际值之间的差异。optimizer
是优化器,这里选择了随机梯度下降(SGD),用于更新模型参数以最小化损失。model = LinearRegression() criterion = nn.MSELoss() # 均方误差损失函数 optimizer = optim.SGD(model.parameters(), lr=0.01) # 随机梯度下降优化器
4.训练模型:
- 这里进行了1000次迭代的训练过程。
- 在每个迭代中,首先进行前向传播,计算模型对
x_train
的预测输出outputs
,然后计算损失loss
。 - 调用
optimizer.zero_grad()
来清空之前的梯度,然后调用loss.backward()
自动计算梯度,最后调用optimizer.step()
来更新模型参数。epochs = 1000 for epoch in range(epochs):# 前向传播outputs = model(x_train)loss = criterion(outputs, y_train)# 反向传播optimizer.zero_grad() # 清空之前的梯度loss.backward() # 自动计算梯度optimizer.step() # 更新模型参数if (epoch+1) % 100 == 0:print(f'Epoch [{epoch+1}/{epochs}], Loss: {loss.item():.4f}')
5.测试模型:
x_test
是用来测试模型的输入数据,这里表示输入为4.0。model(x_test)
对x_test
进行前向传播,得到预测结果predicted
。predicted.item()
取出预测结果的标量值并打印出来。x_test = torch.tensor([[4.0]]) predicted = model(x_test) print(f'预测值: {predicted.item():.4f}')
运行结果:
运行结果如下:
相关文章:

采用自动微分进行模型的训练
自动微分训练模型 简单代码实现: import torch import torch.nn as nn import torch.optim as optim# 定义一个简单的线性回归模型 class LinearRegression(nn.Module):def __init__(self):super(LinearRegression, self).__init__()self.linear nn.Linear(1, 1) …...
k8s怎么配置secret呢?
在Kubernetes中,配置Secret主要涉及到创建、查看和使用Secret的过程。以下是配置Secret的详细步骤和相关信息: ### 1. Secret的概念 * Secret是Kubernetes用来保存密码、token、密钥等敏感数据的资源对象。 * 这些敏感数据可以存放在Pod或镜像中&#x…...

算法篇 滑动窗口 leetcode 长度最小的子数组
长度最小的子数组 1. 题目描述2. 算法图分析2.1 暴力图解2.2 滑动窗口图解 3. 代码演示 1. 题目描述 2. 算法图分析 2.1 暴力图解 2.2 滑动窗口图解 3. 代码演示...

数据库作业d8
要求: 一备份 1 mysqldump -u root -p booksDB > booksDB_all_tables.sql 2 mysqldump -u root -p booksDB books > booksDB_books_table.sql 3 mysqldump -u root -p --databases booksDB test > booksDB_and_test_databases.sql 4 mysql -u roo…...

前后端数据交互设计到的跨域问题
前后端分离项目的跨域问题及解决办法 一、跨域简述 1、问题描述 这里前端vue项目的端口号为9000,后端springboot项目的端口号为8080 2、什么是跨域 当一个请求url的协议、域名、端口三者之间任意一个与当前页面url不同即为跨域 当前页面url被请求页面url是否…...

非洲猪瘟监测设备的作用是什么?
TH-H160非洲猪瘟监测设备的主要作用是迅速、准确地检测出非洲猪瘟病毒,从而帮助控制和预防疫情的扩散。这些设备利用先进的生物传感技术和PCR分子生物学方法,能够在极短的时间内提供精确的检测结果<sup>1</sup><sup>2</sup><…...

移动硬盘损坏无法读取?专业恢复策略全解析
在数字化信息爆炸的今天,移动硬盘作为我们存储和传输大量数据的重要工具,其安全性和稳定性直接关系到个人与企业的数据安全。然而,当移动硬盘突然遭遇损坏,无法正常读取时,我们该如何应对?本文将深入探讨移…...

神经网络以及简单的神经网络模型实现
神经网络基本概念: 神经元(Neuron): 神经网络的基本单元,接收输入,应用权重并通过激活函数生成输出。 层(Layer): 神经网络由多层神经元组成。常见的层包括输入层、隐藏层…...
java中压缩文件的解析方式(解析文件)
背景了解:java中存在IO流的方式,支持我们对文件进行读取(Input,从磁盘到内存)或写入(output,从内存到磁盘),那么我们在面对 “zip”格式或者 “rar” 格式的压缩文件&…...

巧用 VScode 网页版 IDE 搭建个人笔记知识库!
[ 知识是人生的灯塔,只有不断学习,才能照亮前行的道路 ] 巧用 VScode 网页版 IDE 搭建个人笔记知识库! 描述:最近自己在腾讯云轻量云服务器中部署了一个使用在线 VScode 搭建部署的个人Markdown在线笔记,考虑到在线 VScode 支持终…...
Jupyter Lab 使用
Jupyter Lab 使用详解 Jupyter Lab 是一个基于 Web 的交互式开发环境,提供了比 Jupyter Notebook 更加灵活和强大的用户界面和功能。以下是使用 Jupyter Lab 的详细指南,包括安装、基本使用、设置根目录和扩展功能等内容。 一、Jupyter Lab 安装与启动…...

MyBatis where标签内嵌foreach标签查询报错‘缺失右括号‘或‘命令未正确结束‘
MyBatis <where>标签内嵌<foreach>标签查询报错’缺失右括号’或’命令未正确结束’ <where>标签内嵌<foreach>标签 截取一段脱敏xml,写明大概意思 <select id"queryLogByIds" resultMap"BaseResultMap">SELE…...

重生奇迹MU 群战王牌
圣导师是重生奇迹MU游戏中八大职业之一,拥有风度翩翩、潇洒自如的形象和神一样的实力。无论是刷怪、PK、打boss还是混战,圣导师都表现出压制其他职业的强大气势。因此,这个职业在游戏中备受欢迎,人气非常高。 实力强大的二代隐藏…...
SpinalHDL之VHDL 和 Verilog 生成
本文作为SpinalHDL学习笔记第十六篇,记录使用SpinalHDL代码生成Verilog/VHDL代码的方法。 SpinalHDL学习笔记总纲链接如下: SpinalHDL 学习笔记_spinalhdl blackbox-CSDN博客 目录: 1.从 SpinalHDL 组件生成 VHDL 和 Verilog 2.生成的 VHD…...

c语言中的字符串函数
strstr函数 函数介绍 strstr 用于在一个字符串中查找另一个字符串的首次出现。 我们来看这个函数的参数名字:haysytack(干草堆)needle(针),这个其实就是外国的一句谚语:在干草堆中找一根针,就…...
[AI 大模型] 百度 文心一言
文章目录 [AI 大模型] 百度 文心一言简介模型架构发展新技术和优势API 代码示例 [AI 大模型] 百度 文心一言 [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-0DwAIh0T-1720667576892)(https://i-blog.csdnimg.cn/direct/283919e5d78b4951ba1ade5dcfc…...

机器学习开源分子生成系列(2)-基于三维形状和静电相似性的DeepFMPO v3D安装及使用
前言 本文是基于 3D 的分子生成方法DeepFMPO v3D的介绍及安装使用。 一、DeepFMPO v3D是什么? github代码介绍文章 在药物发现中,如何寻找具新颖性和结构多样性的候选分子是颇受药物设计科学家关注的问题。通过虚拟筛选的化学空间搜索往往会受限于筛选…...
机器学习-16-分布式梯度提升库XGBoost的应用
参考XGBoost库 1 XGBoost分布式梯度提升库 XGBoost,全称为eXtreme Gradient Boosting,是一个优化的分布式梯度提升库,旨在高效、灵活且便携。它在Gradient Boosting框架下实现了机器学习算法,并广泛用于分类、回归和排序任务。XGBoost之所以受到广泛欢迎,主要归功于它的…...
视觉/AIGC面经->多模态
1.ocr检测如何做?qwen的文本检测是否合理? paligemma: <loc0110><loc0124><loc0224><loc0389> plate ; <loc0244><loc0130><loc0281><loc0430> plate ; <loc0364><loc0820><loc0403><loc0951> pl…...

<数据集>钢板缺陷检测数据集<目标检测>
数据集格式:VOCYOLO格式 图片数量:1986张 标注数量(xml文件个数):1986 标注数量(txt文件个数):1986 标注类别数:7 标注类别名称:[crescent gap, silk spot, water spot, weld line, oil spot, punchin…...

智能分布式爬虫的数据处理流水线优化:基于深度强化学习的数据质量控制
在数字化浪潮席卷全球的今天,数据已成为企业和研究机构的核心资产。智能分布式爬虫作为高效的数据采集工具,在大规模数据获取中发挥着关键作用。然而,传统的数据处理流水线在面对复杂多变的网络环境和海量异构数据时,常出现数据质…...

OPenCV CUDA模块图像处理-----对图像执行 均值漂移滤波(Mean Shift Filtering)函数meanShiftFiltering()
操作系统:ubuntu22.04 OpenCV版本:OpenCV4.9 IDE:Visual Studio Code 编程语言:C11 算法描述 在 GPU 上对图像执行 均值漂移滤波(Mean Shift Filtering),用于图像分割或平滑处理。 该函数将输入图像中的…...
现有的 Redis 分布式锁库(如 Redisson)提供了哪些便利?
现有的 Redis 分布式锁库(如 Redisson)相比于开发者自己基于 Redis 命令(如 SETNX, EXPIRE, DEL)手动实现分布式锁,提供了巨大的便利性和健壮性。主要体现在以下几个方面: 原子性保证 (Atomicity)ÿ…...

FFmpeg:Windows系统小白安装及其使用
一、安装 1.访问官网 Download FFmpeg 2.点击版本目录 3.选择版本点击安装 注意这里选择的是【release buids】,注意左上角标题 例如我安装在目录 F:\FFmpeg 4.解压 5.添加环境变量 把你解压后的bin目录(即exe所在文件夹)加入系统变量…...

关于easyexcel动态下拉选问题处理
前些日子突然碰到一个问题,说是客户的导入文件模版想支持部分导入内容的下拉选,于是我就找了easyexcel官网寻找解决方案,并没有找到合适的方案,没办法只能自己动手并分享出来,针对Java生成Excel下拉菜单时因选项过多导…...
提升移动端网页调试效率:WebDebugX 与常见工具组合实践
在日常移动端开发中,网页调试始终是一个高频但又极具挑战的环节。尤其在面对 iOS 与 Android 的混合技术栈、各种设备差异化行为时,开发者迫切需要一套高效、可靠且跨平台的调试方案。过去,我们或多或少使用过 Chrome DevTools、Remote Debug…...

Elastic 获得 AWS 教育 ISV 合作伙伴资质,进一步增强教育解决方案产品组合
作者:来自 Elastic Udayasimha Theepireddy (Uday), Brian Bergholm, Marianna Jonsdottir 通过搜索 AI 和云创新推动教育领域的数字化转型。 我们非常高兴地宣布,Elastic 已获得 AWS 教育 ISV 合作伙伴资质。这一重要认证表明,Elastic 作为 …...
命令行关闭Windows防火墙
命令行关闭Windows防火墙 引言一、防火墙:被低估的"智能安检员"二、优先尝试!90%问题无需关闭防火墙方案1:程序白名单(解决软件误拦截)方案2:开放特定端口(解决网游/开发端口不通)三、命令行极速关闭方案方法一:PowerShell(推荐Win10/11)方法二:CMD命令…...

在Zenodo下载文件 用到googlecolab googledrive
方法:Figshare/Zenodo上的数据/文件下载不下来?尝试利用Google Colab :https://zhuanlan.zhihu.com/p/1898503078782674027 参考: 通过Colab&谷歌云下载Figshare数据,超级实用!!࿰…...
codeforces C. Cool Partition
目录 题目简述: 思路: 总代码: https://codeforces.com/contest/2117/problem/C 题目简述: 给定一个整数数组,现要求你对数组进行分割,但需满足条件:前一个子数组中的值必须在后一个子数组中…...