当前位置: 首页 > news >正文

有关去中心化算路大模型的一些误区:低带宽互连导致训练速度太慢;小容量设备无法生成基础规模的模型;去中心化总是会花费更多;虫群永远不够大

目录

有关去中心化算路大模型的一些误区

低带宽互连导致训练速度太慢

挑战与解决方案

展望

小容量设备无法生成基础规模的模型

1. 模型规模与设备内存

2. 解决方案

3. 效率挑战

FSDP(Fully Sharded Data Parallel)

Zero-3

去中心化总是会花费更多

虫群永远不够大


有关去中心化算路大模型的一些误区

如果去中心化训练是可行的,那么基础模型开发、模型治理和人工智能安全研究的轨迹都会发生重大变化。很难低估其影响。在协议中创建的模型的真正去中心化治理 变得可行,模型研究加速,不再局限于大型实验室,基础模型提供者的新兴寡头垄断受到挑战,基础模型访问得到保证,并开辟了通往下一个几个数量级大小模型的道路。

低带宽互连导致训练速度太慢

今天的共识是,使用真正去中心化的方法训练基础规模的模型实际上是不可行的。怀疑论者通常支持这一观点,理由是训练的通信强度和节点之间的低带宽连接,这些连接必须在去中心化的情况下使用。当将现有的分布式训练方法原封不动地应用于不同的硬件设置时,这是一个有效的批评。此类系统旨在利用它们在上面部署的基础设施的特定属性。然而,在学术文献中,最近有强有力的工作表明,对这种系统的改变促进了异构、低带宽、小节点容量群中的数十亿参数训练。如果进一步的改变当前的分布式训练方法,明确关注低通信带宽

相关文章:

有关去中心化算路大模型的一些误区:低带宽互连导致训练速度太慢;小容量设备无法生成基础规模的模型;去中心化总是会花费更多;虫群永远不够大

目录 有关去中心化算路大模型的一些误区 低带宽互连导致训练速度太慢 挑战与解决方案 展望 小容量设备无法生成基础规模的模型 1. 模型规模与设备内存 2. 解决方案 3. 效率挑战 FSDP(Fully Sharded Data Parallel) Zero-3 去中心化总是会花费更多 虫群永远不够大…...

uni-app iOS上架相关App store App store connect 云打包有次数限制

app store上架成功,亲测在苹果开发者通过审核后在数小时内app store是不会更新的,昨天4点多通过审核,在下班六点半时app store仍未更新,早上来看更新了。 相册权限 uni-app云打包免费有次数 切换一个账号继续...

python单测框架之pytest常见用法

单测框架的作用 测试发现:从多个文件中寻找测试用例。测试执行:按照一定顺序去执行并且生成结果。测试断言:判断最终结果与实际结果的差异。测试报告:统计测试进度、耗时、通过率,生成测试报告。 pytest简介 pytest是…...

[终端安全]-8 隐私保护和隐私计算技术

1 隐私保护相关法规和标准 1)国内法规和标准 1.1)中华人民共和国网络安全法(2017年) - 规定了个人信息的保护和数据安全的基本原则。 - 要求网络运营者采取措施防止数据泄露、篡改和丢失。 1.2)信息安全技术&#x…...

MySQL 日志深度解析:从查询执行到性能优化

引言 MySQL 日志是数据库管理员和开发者的宝贵资源,它提供了查询执行的详细情况,帮助我们诊断问题和优化性能。本文将深入分析一个具体的 MySQL 日志条目,解释其含义,并提供针对性的优化建议。 日志信息概览 让我们先来快速了解…...

sql server 练习题5

课后作业 在homework库下执行 作业1: 案例:根据用户分数划分等级。小于60分为不及格,[60,80)为及格,[80,90)为良好,大于等于90分以上为优秀。 建表语句: CREATE TABLE Grades ( ID INT PRIMARY KEY, Name V…...

ai伪原创生成器app,一键伪原创文章效率高

如今,在自媒体创作的领域,ai伪原创生成器app的出现,给写作带来了一种全新的方式和效率。ai伪原创生成器app通过使用先进的自然语言处理技术和深度学习算法,能够将原始文章进行重组和改写,生成新的文章,从而…...

【ZhangQian AI模型部署】目标检测、SAM、3D目标检测、旋转目标检测、人脸检测、检测分割、关键点、分割、深度估计、车牌识别、车道线识别

在模型部署落地(主要部署到rk3588)折腾了这么多年,把这些年折腾过的模型整理了一下,所有的流程说明、代码模型都完全开放的,欢迎交流学习。有的是为了项目、有的是为了学习、还有的是为了找点事做、有的完全是为了安抚…...

DROO论文笔记

推荐文章DROO源码及论文学习 读论文《Deep Reinforcement Learning for Online Computation Offloading in Wireless Powered Mobile-Edge Computing Networks》的笔记 论文地址:用于无线移动边缘计算网络在线计算卸载的深度强化学习 论文代码地址:DR…...

修BUG:程序包javax.servlet.http不存在

貌似昨晚上并没有成功在tomcat上面运行,而是直接运行了网页。 不知道为啥又报错这个。。。 解决方案: https://developer.baidu.com/article/details/2768022 就整了这一步就行了 而且我本地就有这个tomcat就是加进去了。 所以说啊,是不是&a…...

python常用库

目录 from sklearn import metrics:评估 ​编辑 svm: ​编辑 逻辑回归预测 ​编辑 朴素贝叶斯分类 ​编辑 主成分分析 ​编辑 其实就是求b.T的协方差阵 ​编辑 【因子分析,因子旋转有点复杂,略】 【层次聚类,原理…...

【UE5.3】笔记11

一、变量的SET&&GET 1、创建变量保存数据,如下图,找到左侧我的蓝图下的变量,新增一个,并选择类型。使用的时候直接将变量拖到蓝图中,此时会显示两个选项一个是获取一个是设置。 选择获取就是个GET蓝图&#x…...

加密与安全 密钥体系的三个核心目标之完整性解决方案

在密钥体系中,确保数据完整性是重要目标之一。以下为您详细讲解相关的完整性解决方案: 消息认证码(MAC): 消息认证码是基于共享密钥和特定算法生成的固定长度代码。在发送方,将消息和共享密钥作为输入&…...

FastAPI 学习之路(四十一)定制返回Response

接口中返回xml格式内容 from fastapi import FastAPI, Responseapp FastAPI()# ① xml app.get("/legacy") def get_legacy_data():data """<?xml version"1.0"?><shampoo><Header>Apply shampoo here.</Header&…...

C++ //练习 15.9 在什么情况下表达式的静态类型可能与动态类型不同?请给出三个静态类型与动态类型不同的例子。

C Primer&#xff08;第5版&#xff09; 练习 15.9 练习 15.9 在什么情况下表达式的静态类型可能与动态类型不同&#xff1f;请给出三个静态类型与动态类型不同的例子。 环境&#xff1a;Linux Ubuntu&#xff08;云服务器&#xff09; 工具&#xff1a;vim 解释 当print_t…...

斐波那契查找算法

斐波那契查找原理&#xff0c;仅仅改变了中间结点(mid)的位置&#xff0c;mid不再是中间或插值得到,而是位于黄金分割点附近&#xff0c;即midlowF(k-1)-1(F代表斐波那契数列) F[k]F[k-1]F[k-2],>(F[k]-1) (F[k-1]-1)(F[k-2]-1)1 说明:只要顺序表的长度为F[k]-1,则可以将该…...

CAN总线学习

can主要用于汽车、航空等控制行业&#xff0c;是一种串行异步通信方式&#xff0c;因为其相较于其他通信方式抗干扰能力更强&#xff0c;更加稳定。原因在于CAN不像其他通信方式那样&#xff0c;以高电平代表1&#xff0c;以低电平代表0&#xff0c;而是通过电压差来表示逻辑10…...

zookeeper基础知识学习

官网&#xff1a;Apache ZooKeeper 下载地址&#xff1a;Index of /dist/zookeeper/zookeeper-3.5.7Index of /dist/zookeeperIndex of /dist/zookeeper/zookeeper-3.5.7 ZK配置参数说明&#xff1a; 1、tickTime2000&#xff1a;通讯心跳时间&#xff0c;zookeeper服务器与客…...

C语言内存管理深度解析面试题及参考答案(2万字长文)

在嵌入式面试时,C语言内存管理是必问面试题,也是难点,相关知识点可以参考: C语言内存管理深度解析​​​​​​​ 下面整理了各种类型的C语言内存管理的面试题: 目录 全局变量和局部变量在内存中分别存储在哪个区域? 静态变量和全局变量有什么区别? 什么是作用域?…...

C++基础(二)

目录 1.类和对象 1.1类的定义 1.2访问限定符 1.3类域 2.实例化 2.1实例化概念 2.2对象大小 3.this指针 4.类的默认成员函数 4.1构造函数 4.2析构函数 4.5运算符重载 1.类和对象 1.1类的定义 类的定义格式 class为定义类的关键字&#xff0c;Stack为类的名字&…...

MFC内存泄露

1、泄露代码示例 void X::SetApplicationBtn() {CMFCRibbonApplicationButton* pBtn GetApplicationButton();// 获取 Ribbon Bar 指针// 创建自定义按钮CCustomRibbonAppButton* pCustomButton new CCustomRibbonAppButton();pCustomButton->SetImage(IDB_BITMAP_Jdp26)…...

为什么需要建设工程项目管理?工程项目管理有哪些亮点功能?

在建筑行业&#xff0c;项目管理的重要性不言而喻。随着工程规模的扩大、技术复杂度的提升&#xff0c;传统的管理模式已经难以满足现代工程的需求。过去&#xff0c;许多企业依赖手工记录、口头沟通和分散的信息管理&#xff0c;导致效率低下、成本失控、风险频发。例如&#…...

Neo4j 集群管理:原理、技术与最佳实践深度解析

Neo4j 的集群技术是其企业级高可用性、可扩展性和容错能力的核心。通过深入分析官方文档,本文将系统阐述其集群管理的核心原理、关键技术、实用技巧和行业最佳实践。 Neo4j 的 Causal Clustering 架构提供了一个强大而灵活的基石,用于构建高可用、可扩展且一致的图数据库服务…...

解决本地部署 SmolVLM2 大语言模型运行 flash-attn 报错

出现的问题 安装 flash-attn 会一直卡在 build 那一步或者运行报错 解决办法 是因为你安装的 flash-attn 版本没有对应上&#xff0c;所以报错&#xff0c;到 https://github.com/Dao-AILab/flash-attention/releases 下载对应版本&#xff0c;cu、torch、cp 的版本一定要对…...

【python异步多线程】异步多线程爬虫代码示例

claude生成的python多线程、异步代码示例&#xff0c;模拟20个网页的爬取&#xff0c;每个网页假设要0.5-2秒完成。 代码 Python多线程爬虫教程 核心概念 多线程&#xff1a;允许程序同时执行多个任务&#xff0c;提高IO密集型任务&#xff08;如网络请求&#xff09;的效率…...

数据库分批入库

今天在工作中&#xff0c;遇到一个问题&#xff0c;就是分批查询的时候&#xff0c;由于批次过大导致出现了一些问题&#xff0c;一下是问题描述和解决方案&#xff1a; 示例&#xff1a; // 假设已有数据列表 dataList 和 PreparedStatement pstmt int batchSize 1000; // …...

自然语言处理——循环神经网络

自然语言处理——循环神经网络 循环神经网络应用到基于机器学习的自然语言处理任务序列到类别同步的序列到序列模式异步的序列到序列模式 参数学习和长程依赖问题基于门控的循环神经网络门控循环单元&#xff08;GRU&#xff09;长短期记忆神经网络&#xff08;LSTM&#xff09…...

淘宝扭蛋机小程序系统开发:打造互动性强的购物平台

淘宝扭蛋机小程序系统的开发&#xff0c;旨在打造一个互动性强的购物平台&#xff0c;让用户在购物的同时&#xff0c;能够享受到更多的乐趣和惊喜。 淘宝扭蛋机小程序系统拥有丰富的互动功能。用户可以通过虚拟摇杆操作扭蛋机&#xff0c;实现旋转、抽拉等动作&#xff0c;增…...

通过MicroSip配置自己的freeswitch服务器进行调试记录

之前用docker安装的freeswitch的&#xff0c;启动是正常的&#xff0c; 但用下面的Microsip连接不上 主要原因有可能一下几个 1、通过下面命令可以看 [rootlocalhost default]# docker exec -it freeswitch fs_cli -x "sofia status profile internal"Name …...

HybridVLA——让单一LLM同时具备扩散和自回归动作预测能力:训练时既扩散也回归,但推理时则扩散

前言 如上一篇文章《dexcap升级版之DexWild》中的前言部分所说&#xff0c;在叠衣服的过程中&#xff0c;我会带着团队对比各种模型、方法、策略&#xff0c;毕竟针对各个场景始终寻找更优的解决方案&#xff0c;是我个人和我司「七月在线」的职责之一 且个人认为&#xff0c…...