Python面试题:如何在 Python 中处理大数据集?
在 Python 中处理大数据集可能面临许多挑战,包括内存限制、计算性能和数据处理效率等。以下是一些处理大数据集的常见方法和技术:
1. 使用高效的数据处理库
1.1 Pandas
Pandas 是一个强大的数据分析库,可以处理中等大小的数据集(几百万行)。然而,对于更大的数据集,Pandas 可能会受到内存限制的影响。
import pandas as pd# 读取大数据集
df = pd.read_csv('large_dataset.csv')# 基本数据处理操作
filtered_df = df[df['column_name'] > value]
1.2 Dask
Dask 是一个并行计算库,可以处理比内存更大的数据集,并且具有与 Pandas 相似的接口。
import dask.dataframe as dd# 读取大数据集
df = dd.read_csv('large_dataset.csv')# 基本数据处理操作
filtered_df = df[df['column_name'] > value].compute()
2. 使用数据库
将大数据集存储在数据库中,通过查询来处理数据,而不是将整个数据集加载到内存中。
2.1 SQLite
对于较小规模的数据集,可以使用 SQLite。
import sqlite3# 连接到数据库
conn = sqlite3.connect('large_dataset.db')# 执行查询
df = pd.read_sql_query('SELECT * FROM table_name WHERE column_name > value', conn)
2.2 PostgreSQL / MySQL
对于更大规模的数据集,可以使用 PostgreSQL 或 MySQL。
import sqlalchemy
from sqlalchemy import create_engine# 连接到 PostgreSQL
engine = create_engine('postgresql://username:password@hostname/database_name')# 执行查询
df = pd.read_sql_query('SELECT * FROM table_name WHERE column_name > value', engine)
3. 使用分布式计算框架
3.1 Apache Spark
Apache Spark 是一个分布式计算框架,可以处理大规模数据集。
from pyspark.sql import SparkSession# 创建 Spark 会话
spark = SparkSession.builder.appName('example').getOrCreate()# 读取大数据集
df = spark.read.csv('large_dataset.csv', header=True, inferSchema=True)# 基本数据处理操作
filtered_df = df.filter(df['column_name'] > value)
4. 内存优化技术
4.1 数据类型优化
确保使用最有效的数据类型来存储数据。例如,使用 category
类型来存储字符串类型的分类数据。
import pandas as pd# 读取大数据集
df = pd.read_csv('large_dataset.csv')# 将字符串列转换为 category 类型
df['column_name'] = df['column_name'].astype('category')
4.2 分块处理
分块读取和处理数据,避免一次性加载整个数据集。
import pandas as pd# 分块读取大数据集
chunks = pd.read_csv('large_dataset.csv', chunksize=100000)# 处理每个块
for chunk in chunks:filtered_chunk = chunk[chunk['column_name'] > value]# 对每个块进行进一步处理
5. 使用生成器
生成器可以逐个处理数据,而不是将整个数据集加载到内存中。
def process_large_file(file_path):with open(file_path) as file:for line in file:# 处理每行数据yield process(line)for processed_line in process_large_file('large_dataset.txt'):# 对每个处理过的行进行进一步处理
6. 并行和多线程处理
使用多线程和多进程来并行处理数据。
6.1 多线程
对于 I/O 密集型任务,可以使用多线程。
from concurrent.futures import ThreadPoolExecutordef process_line(line):# 处理单行数据return processed_linewith ThreadPoolExecutor() as executor:with open('large_dataset.txt') as file:results = list(executor.map(process_line, file))
6.2 多进程
对于 CPU 密集型任务,可以使用多进程。
from multiprocessing import Pooldef process_chunk(chunk):# 处理数据块return processed_chunkchunks = [chunk1, chunk2, chunk3] # 数据块列表with Pool() as pool:results = pool.map(process_chunk, chunks)
通过这些方法,您可以在 Python 中更高效地处理大数据集。选择适当的技术和工具取决于具体的应用场景和数据规模。
相关文章:
Python面试题:如何在 Python 中处理大数据集?
在 Python 中处理大数据集可能面临许多挑战,包括内存限制、计算性能和数据处理效率等。以下是一些处理大数据集的常见方法和技术: 1. 使用高效的数据处理库 1.1 Pandas Pandas 是一个强大的数据分析库,可以处理中等大小的数据集࿰…...

C++:入门基础
1.命名空间 1.1namespace的价值 在C/C中,变量、函数和后面要学到的类都是大量存在的,这些变量、函数和类的名称都将存在于全局作用域中,可能会导致很多冲突。使用命名空间的目的是对标识符的名称进行本地化,避免命名冲突或者名字…...

微信小游戏 彩色试管 倒水游戏 逻辑 (二)
最近开始研究微信小游戏,有兴趣的 可以关注一下 公众号, 记录一些心路历程和源代码。 定义一个 Water class 1. **定义接口和枚举**: - WaterInfo 接口定义了水的颜色、高度等信息。 - PourAction 枚举定义了水的倒动状态,…...

【链表】算法题(一) ---- 力扣 / 牛客
一、移除链表元素 移除链表中值为val的元素,并返回新的头节点 思路: 题目上这样说,我们就可以创建一个新的链表,将值不为val的节点,尾插到新的链表当中,最后返回新链表的头节点。 typedef struct ListNo…...
Linux系统之部署盖楼小游戏
Linux系统之部署盖楼小游戏 一、小游戏介绍1.1 小游戏简介1.2 小游戏玩法基本介绍1.3 项目预览二、本地环境介绍2.1 本地环境规划2.2 本次实践介绍2.3 版本要求三、检查本地环境3.1 检查本地操作系统版本3.2 检查系统内核版本四、安装node.js4.1 安装nvm4.2 查看nvm版本4.3 安装…...

“金山-讯飞”杯2024年武汉理工大学程序设计竞赛 A. Mobiusp败走***(思维题-点双连通分量、连通性)
题目 思路来源 官方题解 题解 手玩发现,能换的话,当且仅当.和1在一个环里,而这就是点双连通分量 所以最优策略是先把.换到(x,y)的位置,然后判断.和1在不在一个环里 也就是: 1. 判断删掉1时,.和(x,y)联…...

【机器翻译】基于术语词典干预的机器翻译挑战赛
文章目录 一、赛题链接二、安装库1.spacy2.torch_text 三、数据预处理赛题数据类定义 TranslationDataset批量处理函数 collate_fn 四、编码器和解码器Encoder 类Decoder 类Seq2Seq 类注意事项 五、主函数1. load_terminology_dictionary(dict_file)2. train(model, iterator, …...

推荐系统:从协同过滤到深度学习
目录 一、协同过滤(Collaborative Filtering, CF)1. 基于用户的协同过滤2. 基于物品的协同过滤 二、深度学习在推荐系统中的应用1. 深度学习模型的优势2. 深度学习在推荐系统中的应用实例 三、总结与展望 推荐系统是现代信息处理和传播中不可或缺的技术&…...

记录些Spring+题集(1)
接口防刷机制 接口被刷指的是同一接口被频繁调用,可能是由于以下原因导致: 恶意攻击:攻击者利用自动化脚本或工具对接口进行大量请求,以消耗系统资源、拖慢系统响应速度或达到其他恶意目的。误操作或程序错误:某些情…...
SpringBoot 解决 getSession().getAttribute() 在负载均衡环境下无法获取session的问题
在Spring Boot中,使用getSession().getAttribute()方法时遇到在负载均衡环境下无法正确获取session属性的问题,通常是由于session属性存储在单个服务器的内存中,而负载均衡会导致用户的请求被分配到不同的服务器上,因此无法找到在…...

Jmeter常用组件及执行顺序
一 常用组件 1.线程组 Thread Group 线程组是一系列线程的集合,每一个线程代表着一个正在使用应用程序的用户。在 jmeter 中,每个线程意味着模拟一个真实用户向服务器发起请求。 在 jmeter 中,线程组组件运行用户设置线程数量、初始化方式等…...

PTrade常见问题系列10
get_ashares获取list为空。 get_Ashares函数目前都是向行情服务器进行获取的 如果请求数过多,应答返回偶现为空现象, 后续版本内进行优化从服务器缓存内取,需求单号:202303213922,于PTradeQT1.0V202202.01.023内发布…...

数据结构(4.4)——求next数组
next数组的作用:当模式串的第j个字符失配时,从模式串的第next[j]的继续往后匹配 求模式串的next数组(手算) next[1] 任何模式串都一样,第一个字符不匹配时,只能匹配下一个子串,因此,往后,next[1]都无脑写…...

《mysql篇》--JDBC编程
JDBC是什么 JDBC就是Java DataBase Connectivity的缩写,翻译过来就很好理解了,就是java连接数据库。所以顾名思义,JDBC就是一种用于执行SQL语句的JavaApl,是Java中的数据库连接规范。为了可以方便的用Java连接各种数据库ÿ…...
android studio 怎么下载 buildTool
在Android Studio中下载Build Tools,通常可以通过Android Studio内置的SDK Manager来完成。以下是详细的步骤: 一、通过Android Studio的SDK Manager下载Build Tools 启动Android Studio:首先,确保你已经安装了Android Studio&am…...
copy 和 mutableCopy 有点乱
字符串的拷贝操作 对 string literal (字符串字面量) 执行 copy 要打印指针指向对象的地址和指针本身的地址,可以使用 %p 格式符来输出指针地址。以下代码,展示了 originalString 和 copiedString 的指针地址和指向对象的地址: NSString *…...
sqlalchemy通过查询参数生成query
sqlalchemy通过查询参数生成query 在SQLAlchemy中,可以使用查询参数来动态生成查询。这通常通过使用.filter()方法和Python的比较运算符来实现。以下是一个简单的示例,展示如何使用查询参数生成查询: 假设我们有一个名为User的模型(表),它具有id、username和email字段。…...

【JavaScript 算法】二分查找:快速定位目标元素
🔥 个人主页:空白诗 文章目录 一、算法原理二、算法实现三、应用场景四、优化与扩展五、总结 二分查找(Binary Search)是一种高效的查找算法,适用于在有序数组中快速定位目标元素。相比于线性查找,二分查找…...

论文研读:ViT-V-Net—用于无监督3D医学图像配准的Vision Transformer
目录 摘要 介绍 方法 VIT-V-Net体系结构 损失函数 图像相似性度量 变形场正则化 结果与讨论 摘要 在过去的十年里,卷积神经网络(ConvNets)在各种医学成像应用中占据了主导地位并取得了最先进的性能。然而,由于缺乏对图像中远程空间关系的理解&a…...

C++入门到进阶(图文详解,持续更新中)
C入门到进阶(图文详解,持续更新中) 详解C入门知识到进阶,配合图观看易于理解记录 文章目录 目录 C入门到进阶(图文详解,持续更新中) 文章目录 前言 一、数据 (一)数据类…...
后进先出(LIFO)详解
LIFO 是 Last In, First Out 的缩写,中文译为后进先出。这是一种数据结构的工作原则,类似于一摞盘子或一叠书本: 最后放进去的元素最先出来 -想象往筒状容器里放盘子: (1)你放进的最后一个盘子(…...

国防科技大学计算机基础课程笔记02信息编码
1.机内码和国标码 国标码就是我们非常熟悉的这个GB2312,但是因为都是16进制,因此这个了16进制的数据既可以翻译成为这个机器码,也可以翻译成为这个国标码,所以这个时候很容易会出现这个歧义的情况; 因此,我们的这个国…...

19c补丁后oracle属主变化,导致不能识别磁盘组
补丁后服务器重启,数据库再次无法启动 ORA01017: invalid username/password; logon denied Oracle 19c 在打上 19.23 或以上补丁版本后,存在与用户组权限相关的问题。具体表现为,Oracle 实例的运行用户(oracle)和集…...
[2025CVPR]DeepVideo-R1:基于难度感知回归GRPO的视频强化微调框架详解
突破视频大语言模型推理瓶颈,在多个视频基准上实现SOTA性能 一、核心问题与创新亮点 1.1 GRPO在视频任务中的两大挑战 安全措施依赖问题 GRPO使用min和clip函数限制策略更新幅度,导致: 梯度抑制:当新旧策略差异过大时梯度消失收敛困难:策略无法充分优化# 传统GRPO的梯…...

Zustand 状态管理库:极简而强大的解决方案
Zustand 是一个轻量级、快速和可扩展的状态管理库,特别适合 React 应用。它以简洁的 API 和高效的性能解决了 Redux 等状态管理方案中的繁琐问题。 核心优势对比 基本使用指南 1. 创建 Store // store.js import create from zustandconst useStore create((set)…...

最新SpringBoot+SpringCloud+Nacos微服务框架分享
文章目录 前言一、服务规划二、架构核心1.cloud的pom2.gateway的异常handler3.gateway的filter4、admin的pom5、admin的登录核心 三、code-helper分享总结 前言 最近有个活蛮赶的,根据Excel列的需求预估的工时直接打骨折,不要问我为什么,主要…...
在鸿蒙HarmonyOS 5中使用DevEco Studio实现录音机应用
1. 项目配置与权限设置 1.1 配置module.json5 {"module": {"requestPermissions": [{"name": "ohos.permission.MICROPHONE","reason": "录音需要麦克风权限"},{"name": "ohos.permission.WRITE…...

SpringTask-03.入门案例
一.入门案例 启动类: package com.sky;import lombok.extern.slf4j.Slf4j; import org.springframework.boot.SpringApplication; import org.springframework.boot.autoconfigure.SpringBootApplication; import org.springframework.cache.annotation.EnableCach…...
DeepSeek 技术赋能无人农场协同作业:用 AI 重构农田管理 “神经网”
目录 一、引言二、DeepSeek 技术大揭秘2.1 核心架构解析2.2 关键技术剖析 三、智能农业无人农场协同作业现状3.1 发展现状概述3.2 协同作业模式介绍 四、DeepSeek 的 “农场奇妙游”4.1 数据处理与分析4.2 作物生长监测与预测4.3 病虫害防治4.4 农机协同作业调度 五、实际案例大…...

初学 pytest 记录
安装 pip install pytest用例可以是函数也可以是类中的方法 def test_func():print()class TestAdd: # def __init__(self): 在 pytest 中不可以使用__init__方法 # self.cc 12345 pytest.mark.api def test_str(self):res add(1, 2)assert res 12def test_int(self):r…...