记录些Spring+题集(1)
接口防刷机制
接口被刷指的是同一接口被频繁调用,可能是由于以下原因导致:
- 恶意攻击:攻击者利用自动化脚本或工具对接口进行大量请求,以消耗系统资源、拖慢系统响应速度或达到其他恶意目的。
- 误操作或程序错误:某些情况下,程序错误或误操作可能导致接口被重复调用,例如循环调用或者定时任务配置错误。
Redis 实现接口防刷
Redis是高性能的键值存储系统,常用于缓存和分布式锁等场景。利用Redis可以有效地实现接口防刷功能:
- 计数器:利用Redis的计数器功能,每次接口被调用时增加计数器的值,设定一个时间窗口内的最大调用次数,超过该次数则拒绝请求。
- 分布式锁:利用Redis的分布式锁功能,确保同一时间只有一个请求能够增加计数器的值,防止并发问题导致计数器失效。
拦截器实现接口防刷
在Spring Boot中,可以通过编写拦截器来实现接口防刷的功能:
- 编写拦截器:创建一个实现HandlerInterceptor接口的拦截器类,重写preHandle方法,在该方法中进行接口调用次数的检查,如果超过阈值则拦截请求。
- 配置拦截器:在Spring Boot的配置类中通过addInterceptor方法将拦截器注册到拦截器链中,配置拦截器的拦截路径和排除路径。
分布式ID生成策略
构建分布式系统时,如何对数据进行唯一标识也是一个至关重要的设计。不仅要符合B-tree数据结构以维持查询性能,还要考虑唯一标识的连续性会不会影响系统安全性。在分库分表的情况下,还要避免唯一标识重复且高效等等需要考虑的点。
1、UUID
UUID(Universally Unique Identifier)是基于当前时间、计数器和硬件标识(通常为无线网卡的MAC地址)等数据计算生成的。UUID完全可以满足分布式唯一标识,但是在实际应用过程中一般不采用,有几个原因:(如果UUID作为数据库主键,在InnoDB引擎下,UUID的无序性可能会引起数据位置频繁变动,严重影响性能。)
- 存储成本高:UUID太长,16字节128位,以36长度的字符串表示,很多场景不适用。
- 信息不安全:基于MAC地址生成的UUID算法会暴露MAC地址,曾经梅丽莎病毒的制造者就是根据UUID寻找的。
- 不符合MySQL主键要求:MySQL官方有明确的建议,主键要尽量越短越好,因为太长对MySQL索引不利。
2、数据库自增ID
利用MySQL自增的ID,可以达到数据唯一标识。但是分库分表后不能保证整体的ID唯一。为了避免这种情况,有以下两种方式可以解决该问题。
全局主键表
创建全局主键表维护唯一标识,作为ID的输出源可以保证整体ID的唯一。
ID自增步长设置
通过设置MySQL不同实例的主键自增步长为不同值,让分布在不同实例的表数据ID做到不重复,从而保证整体的唯一。但是这种方式的扩展性会是一个非常大的问题。
3、号段模式
号段模式是当下分布式ID生成器的主流实现方式之一。其原理如下:
- 号段模式每次从数据库取出一个号段范围,加载到服务内存中。避免每次生成ID都去访问数据库。
- 当号段ID用完,再次向数据库申请新号段,对max_id字段做一次update操作,新的号段范围是(max_id ,max_id +step]。
- 由于多业务端可能同时操作,所以采用版本号version乐观锁方式更新。
这种分布式ID生成方式不强依赖于数据库,不会频繁的访问数据库,对数据库的压力小很多。但同样也会存在一些缺点,比如:服务器重启,单点故障会造成ID不连续。
4、Redis INCR
作为共享内存,可以通过Redis的INCR命令来生成全局唯一ID。Redis也有对应的缺点:ID 生成的持久化问题,如果Redis宕机了怎么进行恢复是开发人员需要考虑的。
5、雪花算法
Snowflake,雪花算法是由Twitter开源的分布式ID生成算法,以划分命名空间的方式将64bit位分割成了多个部分,每个部分都有具体的不同含义,在Java中64Bit位的整数是Long类型,所以在Java中Snowflake算法生成的ID就是long来存储的。具体如下:

雪花算法强依赖机器时钟,如果机器上时钟回拨,会导致重复。通常通过记录最后使用时间处理该问题。
6、美团(Leaf)
美团点评分布式ID生成系统。支持号段模式和snowflake算法模式,可以切换使用。
开源项目链接:https://github.com/Meituan-Dianping/Leaf
Leaf详细介绍:https://tech.meituan.com/2017/04/21/mt-leaf.html
7、百度(UidGenerator)
UidGenerator是基于Snowflake算法的。克服了雪花算法的并发限制,单个实例的QPS能超过6000000。需要的环境:JDK8+,MySQL(用于分配WorkerId)。
源码地址:https://github.com/baidu/uid-generator
中文文档地址:https://github.com/baidu/uid-generator/blob/master/README.zh_cn.md
8、滴滴(TinyID)
Tinyid是滴滴基于美团(Leaf)的号段模式基础上升级而来,不仅支持了数据库多主节点模式,还提供了tinyid-client客户端的接入方式,使用起来更加方便。
开源项目链接:https://github.com/didi/tinyid
总结比较
| 优点 | 缺点 | |
|---|---|---|
| UUID | 代码实现简单、没有网络开销,性能好 | 占用空间大、无序 |
| 数据库自增ID | 利用数据库系统的功能实现,成本小、ID自增有序 | 并发性能受Mysql限制、强依赖DB,当DB异常时整个系统不可用,致命 |
| Redis INCR | 性能优于数据库、ID有序 | 解决单点问题带来的数据一致性等问题使得复杂度提高 |
| 雪花算法 | 不依赖数据库等第三方系统,性能也是非高、可以根据自身业务特性分配bit位,非常灵活 | 强依赖机器时钟,如果机器上时钟回拨,会导致发号重复或者服务会处于不可用状态。 |
| 号段模式 | 数据库的压力小 | 单点故障ID不连续 |
| Leaf、Uidgenerator、TinyID | 高性能、高可用、接入简单 | 依赖第三方组件如ZooKeeper、Mysql |
相关文章:
记录些Spring+题集(1)
接口防刷机制 接口被刷指的是同一接口被频繁调用,可能是由于以下原因导致: 恶意攻击:攻击者利用自动化脚本或工具对接口进行大量请求,以消耗系统资源、拖慢系统响应速度或达到其他恶意目的。误操作或程序错误:某些情…...
SpringBoot 解决 getSession().getAttribute() 在负载均衡环境下无法获取session的问题
在Spring Boot中,使用getSession().getAttribute()方法时遇到在负载均衡环境下无法正确获取session属性的问题,通常是由于session属性存储在单个服务器的内存中,而负载均衡会导致用户的请求被分配到不同的服务器上,因此无法找到在…...
Jmeter常用组件及执行顺序
一 常用组件 1.线程组 Thread Group 线程组是一系列线程的集合,每一个线程代表着一个正在使用应用程序的用户。在 jmeter 中,每个线程意味着模拟一个真实用户向服务器发起请求。 在 jmeter 中,线程组组件运行用户设置线程数量、初始化方式等…...
PTrade常见问题系列10
get_ashares获取list为空。 get_Ashares函数目前都是向行情服务器进行获取的 如果请求数过多,应答返回偶现为空现象, 后续版本内进行优化从服务器缓存内取,需求单号:202303213922,于PTradeQT1.0V202202.01.023内发布…...
数据结构(4.4)——求next数组
next数组的作用:当模式串的第j个字符失配时,从模式串的第next[j]的继续往后匹配 求模式串的next数组(手算) next[1] 任何模式串都一样,第一个字符不匹配时,只能匹配下一个子串,因此,往后,next[1]都无脑写…...
《mysql篇》--JDBC编程
JDBC是什么 JDBC就是Java DataBase Connectivity的缩写,翻译过来就很好理解了,就是java连接数据库。所以顾名思义,JDBC就是一种用于执行SQL语句的JavaApl,是Java中的数据库连接规范。为了可以方便的用Java连接各种数据库ÿ…...
android studio 怎么下载 buildTool
在Android Studio中下载Build Tools,通常可以通过Android Studio内置的SDK Manager来完成。以下是详细的步骤: 一、通过Android Studio的SDK Manager下载Build Tools 启动Android Studio:首先,确保你已经安装了Android Studio&am…...
copy 和 mutableCopy 有点乱
字符串的拷贝操作 对 string literal (字符串字面量) 执行 copy 要打印指针指向对象的地址和指针本身的地址,可以使用 %p 格式符来输出指针地址。以下代码,展示了 originalString 和 copiedString 的指针地址和指向对象的地址: NSString *…...
sqlalchemy通过查询参数生成query
sqlalchemy通过查询参数生成query 在SQLAlchemy中,可以使用查询参数来动态生成查询。这通常通过使用.filter()方法和Python的比较运算符来实现。以下是一个简单的示例,展示如何使用查询参数生成查询: 假设我们有一个名为User的模型(表),它具有id、username和email字段。…...
【JavaScript 算法】二分查找:快速定位目标元素
🔥 个人主页:空白诗 文章目录 一、算法原理二、算法实现三、应用场景四、优化与扩展五、总结 二分查找(Binary Search)是一种高效的查找算法,适用于在有序数组中快速定位目标元素。相比于线性查找,二分查找…...
论文研读:ViT-V-Net—用于无监督3D医学图像配准的Vision Transformer
目录 摘要 介绍 方法 VIT-V-Net体系结构 损失函数 图像相似性度量 变形场正则化 结果与讨论 摘要 在过去的十年里,卷积神经网络(ConvNets)在各种医学成像应用中占据了主导地位并取得了最先进的性能。然而,由于缺乏对图像中远程空间关系的理解&a…...
C++入门到进阶(图文详解,持续更新中)
C入门到进阶(图文详解,持续更新中) 详解C入门知识到进阶,配合图观看易于理解记录 文章目录 目录 C入门到进阶(图文详解,持续更新中) 文章目录 前言 一、数据 (一)数据类…...
【React Hooks原理 - useRef】
概述 在Function Component项目中当我们需要操作dom的时候,第一时间想到的就是使用useRef这个Hook来绑定dom。但是这个仅仅是使用这个Hook而已,为了更好的学习React Hooks内部实现原理,知其所以然。所以本文根据源码从useRef的基础使用场景一…...
MVC之 IHttpModule管道模型《二》
》》》注意:在http请求的处理过程中,只能调用一个HttpHandler,但可以调用多个HttpModule。 HTTP Modules ASP.NET请求处理过程是基于管道模型的,这个管道模型是由多个HttpModule和HttpHandler组成,当请求到达HttpMod…...
2025上海纺织助剂展会+上海织物整理剂展
2025上海纺织助剂展会上海织物整理剂展 2025第十二届中国(上海)纺织助剂及织物整理剂展览会 时间: 2025年4月23-25日 地点:上海跨国采购会展中心(光复西路2739号) 展会简介: 2025第12届中国(上海&#…...
中科亿海微亮相慕尼黑上海电子展
7月8-10日,备受瞩目的全球电子行业盛会“慕尼黑上海电子展”以空前规模启幕,汇聚了超过1600家参展企业,涵盖了从终端产品制造商到元器件供应商、组装/系统供应商、EMS、ODM/OEM、材料供应商及生产设备供应商的完整产业链。中科亿海微电子科技…...
Spring boot 2.0 升级到 3.3.1 的相关问题 (一)
文章目录 Spring boot 2.0 升级到 3.3.1 的相关问题 (一)拦截器Interceptor的变动问题介绍解决方案 WebMvcConfigurerAdapter 自定义Mvc配置问题介绍解决方案 Spring boot 2.0 升级到 3.3.1 的相关问题 (一) 拦截器Interceptor的…...
数据分析——Python网络爬虫(四){爬虫库的使用}
爬虫库 爬虫的步骤urllib库发送请求两种方法案例 爬虫的步骤 #mermaid-svg-h5azjtPInpsU2ZpP {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-h5azjtPInpsU2ZpP .error-icon{fill:#552222;}#mermaid-svg-h5azjtPInps…...
C++客户端Qt开发——信号和槽
三、信号和槽 1.信号和槽概述 在Qt中,用户和控件的每次交互过程称为一个事件。比如"用户点击按钮”是一个事件,"用户关闭窗口”也是一个事件。每个事件都会发出一个信号,例如用户点击按钮会发出"按钮被点击"的信号&…...
基于双向长短期记忆 BiLSTM 实现股票单变量时间序列预测(PyTorch版)
前言 系列专栏:【深度学习:算法项目实战】✨︎ 涉及医疗健康、财经金融、商业零售、食品饮料、运动健身、交通运输、环境科学、社交媒体以及文本和图像处理等诸多领域,讨论了各种复杂的深度神经网络思想,如卷积神经网络、循环神经网络、生成对…...
MongoDB学习和应用(高效的非关系型数据库)
一丶 MongoDB简介 对于社交类软件的功能,我们需要对它的功能特点进行分析: 数据量会随着用户数增大而增大读多写少价值较低非好友看不到其动态信息地理位置的查询… 针对以上特点进行分析各大存储工具: mysql:关系型数据库&am…...
大数据零基础学习day1之环境准备和大数据初步理解
学习大数据会使用到多台Linux服务器。 一、环境准备 1、VMware 基于VMware构建Linux虚拟机 是大数据从业者或者IT从业者的必备技能之一也是成本低廉的方案 所以VMware虚拟机方案是必须要学习的。 (1)设置网关 打开VMware虚拟机,点击编辑…...
Objective-C常用命名规范总结
【OC】常用命名规范总结 文章目录 【OC】常用命名规范总结1.类名(Class Name)2.协议名(Protocol Name)3.方法名(Method Name)4.属性名(Property Name)5.局部变量/实例变量(Local / Instance Variables&…...
HTML 列表、表格、表单
1 列表标签 作用:布局内容排列整齐的区域 列表分类:无序列表、有序列表、定义列表。 例如: 1.1 无序列表 标签:ul 嵌套 li,ul是无序列表,li是列表条目。 注意事项: ul 标签里面只能包裹 li…...
oracle与MySQL数据库之间数据同步的技术要点
Oracle与MySQL数据库之间的数据同步是一个涉及多个技术要点的复杂任务。由于Oracle和MySQL的架构差异,它们的数据同步要求既要保持数据的准确性和一致性,又要处理好性能问题。以下是一些主要的技术要点: 数据结构差异 数据类型差异ÿ…...
Matlab | matlab常用命令总结
常用命令 一、 基础操作与环境二、 矩阵与数组操作(核心)三、 绘图与可视化四、 编程与控制流五、 符号计算 (Symbolic Math Toolbox)六、 文件与数据 I/O七、 常用函数类别重要提示这是一份 MATLAB 常用命令和功能的总结,涵盖了基础操作、矩阵运算、绘图、编程和文件处理等…...
DingDing机器人群消息推送
文章目录 1 新建机器人2 API文档说明3 代码编写 1 新建机器人 点击群设置 下滑到群管理的机器人,点击进入 添加机器人 选择自定义Webhook服务 点击添加 设置安全设置,详见说明文档 成功后,记录Webhook 2 API文档说明 点击设置说明 查看自…...
毫米波雷达基础理论(3D+4D)
3D、4D毫米波雷达基础知识及厂商选型 PreView : https://mp.weixin.qq.com/s/bQkju4r6med7I3TBGJI_bQ 1. FMCW毫米波雷达基础知识 主要参考博文: 一文入门汽车毫米波雷达基本原理 :https://mp.weixin.qq.com/s/_EN7A5lKcz2Eh8dLnjE19w 毫米波雷达基础…...
Qt 事件处理中 return 的深入解析
Qt 事件处理中 return 的深入解析 在 Qt 事件处理中,return 语句的使用是另一个关键概念,它与 event->accept()/event->ignore() 密切相关但作用不同。让我们详细分析一下它们之间的关系和工作原理。 核心区别:不同层级的事件处理 方…...
零知开源——STM32F103RBT6驱动 ICM20948 九轴传感器及 vofa + 上位机可视化教程
STM32F1 本教程使用零知标准板(STM32F103RBT6)通过I2C驱动ICM20948九轴传感器,实现姿态解算,并通过串口将数据实时发送至VOFA上位机进行3D可视化。代码基于开源库修改优化,适合嵌入式及物联网开发者。在基础驱动上新增…...
