树与二叉树
前言:
树这个结构想必在日常生活中很常见到,而现在要介绍的是一种独特的数据结构--二叉树。
1.树
(1)定义:
是一种非线性结构,有一个特殊的节点叫做根节点,树没有前驱节点;树是递归定义的;树形结构中子树不能有交集,否则就不是树形结构。
(2)树相关重要概念:(如上图)
节点的度:一个节点含有的子树的个数。eg:A的度为2,B的度为3。
树的度:一棵树中,所有节点的度中的最大值。 eg:树的度为3.
叶子节点/终端节点:节点的度为0的节点。eg:叶子节点:E,D,G,F
双亲节点/父节点:若有一个节点含有子节点,则称这个节点为该子节点的双亲节点/父节点。
孩子节点/子节点:一个节点含有的子树的根节点称为该节点的子节点。
根节点:一颗树中,没有双亲节点的节点。
节点的层次:从根节点开始,根为第一层,根的子节点为第二层,以此类推。
树的高度/深度:树中节点的最大层次。eg:树的深度/高度为3.
2.二叉树
(1)定义:
该树中每个节点的度都小于等于2;且子树有左右子树之分。下图都是二叉树。
(2)两种特殊的二叉树:
a.完全二叉树:如果一颗树的节点个数为n,深度为K,且树中每一个节点都是深度为K的满二叉树中编号从0~(n-1)的节点,则称为完全二叉树。
b.满二叉树:每层节点数都是最大值 => 如果一颗树的高度为n,且树节点的总数为,则称为满二叉树。
(3)二叉树的性质:
a.若根节点的层数为1,则一颗非空二叉树的第i层上的节点最多有个。
b.若规定只有根节点的二叉树的深度为1,则深度为K的二叉树节点总数最多为。
c.对任何一颗二叉树,如果叶子节点的个数为,节点的度为2的节点个数为
,则
+1=
。
d.具有n个节点的完全二叉树,则该树的深度为向上取整。
e.对于具有n个节点的完全二叉树,如果按照从上到下,从左到右的顺序对所有节点,从0开始编号,对于第i个节点有:
如果i>0,则双亲节点/父节点:;如果i=0,则没有双亲节点/父节点;
如果2i+1<n,则该节点有左孩子;否则没有左孩子。
如果2i+2<n,则该节点有右孩子;否则没有右孩子。
f.对于一颗完全二叉树来说,如果该树节点总数为偶数个,则节点的度为1的节点只有一个;若为奇数个,则没有节点的度为1的节点。
(4)二叉树的遍历及其代码实现:
在实现二叉树的遍历之前,首先需要创建一个类TreeNode(二叉树的节点,包含该节点的值,该节点的左孩子节点,该节点的右孩子节点),所以:
class TreeNode {public TreeNode left;//左孩子public TreeNode right;//右孩子public int val;public TreeNode(int val) {this.val = val;}
}
a.前序遍历:根节点 -> 左子树 -> 右子树
分析:
代码实现:
public void preorderTraversal(TreeNode root) {if(root == null) {return;}System.out.print(root.val + " ");preorderTraversal(root.left);preorderTraversal(root.right);
}
b.中序遍历:左子树 -> 根节点 -> 右子树
分析:
代码实现:
public void inorderTraversal(TreeNode root) {if(root == null) {return;}preorderTraversal(root.left);System.out.print(root.val + " ");preorderTraversal(root.right);
}
c.后序遍历:左子树 -> 右子树 -> 根节点
分析:
代码实现:
public void lastorderTraversal(TreeNode root) {if(root == null) {return;}preorderTraversal(root.left);preorderTraversal(root.right);System.out.print(root.val + " ");
}
(5)二叉树相关OJ题:
二叉树所有的题都会涉及到递归。所有OJ题的前提都是已经创建好了一颗树,并且知道根节点为root。
a.求树的高度。
题析:
题解:
public int getHeight(TreeNode root) {if(root == null) {return 0;}int leftHeight = getHeight(root.left);int rightHeight = getHeight(root.right);return Math.max(leftHeight,rightHeight) + 1;//这里也可以用条件运算符
}
b.求树中叶子节点的个数。
题析:
题解:
public int getLeafNodeCount(TreeNode root) {if(root == null) {return 0;}if(root.left == null && root.right == null) {return 1;} return getLeafNodeCount(root.left) + getLeafNodeCount(root.right);
}
c.第i层有多少个节点。
题析:
题解:
public int getKLevelNodeCount(TreeNode root, int k) {if(root == null) {return 0;}if(k == 1) {return 1;}return getKLevelNodeCount(root.left, k - 1) + getKLevelNodeCount(root.right, k - 1);
}
d.判断某个val值是否存在于树中。
题析:
题解:
public TreeNode getVal(TreeNode root, int val) {if(root == null) {return null;}if(root.val == val) {return root;}TreeNode leftTree = getVal(root.left,val);if(leftTree != null) {return leftTree;}TreeNode rightTree = getVal(root.right,val);if(rightTree != null) {return rightTree;}return null;
}
e.节点的总个数。
题析:
题解:
public int size(TreeNode root) {if(root == null) {return 0;}return size(root.left) + size(root.right) + 1;
}
f.检查两棵树是否相同
题析:
题解:
class Solution {public boolean isSameTree(TreeNode p, TreeNode q) {if(p == null && q == null) {return true;}if(p == null && q != null || q == null && p != null) {return false;}if(p.val != q.val) {return false;}return isSameTree(p.left, q.left) && isSameTree(p.right, q.right);}
}
g.另一棵树的子树
题析:
题解:
class Solution {//判断两棵树的结构是否相同private boolean isSameTree(TreeNode p, TreeNode q) {if(p == null && q == null) {return true;}if(p == null && q != null || q == null && p != null) {return false;}if(p.val != q.val) {return false;}return isSameTree(p.left, q.left) && isSameTree(p.right, q.right);}public boolean isSubtree(TreeNode root, TreeNode subRoot) {if(root == null) {return false;}if(isSameTree(root,subRoot)) {return true; }return isSubtree(root.left,subRoot) || isSubtree(root.right,subRoot);}
}
h.翻转二叉树
题析:
题解:
法一:该种方法没有利用返回值(先序遍历)。
class Solution {public TreeNode invertTree(TreeNode root) {if(root == null) {return null;}if(root.left == null && root.right == null) {return root;}TreeNode tmp = root.left;root.left = root.right;root.right = tmp;invertTree(root.left);invertTree(root.right);return root;}
}
法二:利用返回值(后序遍历)。
class Solution {public TreeNode invertTree(TreeNode root) {if(root == null) {return null;}if(root.left == null && root.right == null) {return root;}TreeNode leftNode = invertTree(root.left);TreeNode rightNode = invertTree(root.right);root.left = rightNode;root.right = leftNode;return root;}
}
i.是否为平衡二叉树
题析:
题解:
法一:该方法的时间复杂度为
class Solution {public boolean isBalanced(TreeNode root) {if(root == null) {return true;}int leftHeight = getHeight(root.left);int rightHeight = getHeight(root.right);if(Math.abs(leftHeight - rightHeight) > 1) {return false;} return isBalanced(root.left) && isBalanced(root.right);}private int getHeight(TreeNode root) {if(root == null) {return 0;}int leftHigh = getHeight(root.left);int rightHigh = getHeight(root.right);return Math.max(leftHigh,rightHigh) + 1;}
}
法二:可以实现时间复杂度为,只需要去修改getHeight方法,在求高度的过程中去判断是否每一个节点的高度差 <= 1。
题解:
class Solution {public boolean isBalanced(TreeNode root) {if(root == null) {return true;}return getHeight(root) >= 0;}private int getHeight(TreeNode root) {if(root == null) {return 0;}int leftHigh = getHeight(root.left);if(leftHigh == -1) {return -1;}int rightHigh = getHeight(root.right);if(rightHigh >= 0 && Math.abs(leftHigh - rightHigh) <= 1) {return Math.max(leftHigh,rightHigh) + 1;}return -1;}
}
j.二叉树的构建与遍历
题析:
题解:
import java.util.Scanner;
class TreeNode {public char val;public TreeNode left;public TreeNode right;public TreeNode(char val) {this.val = val;}
}public class Main {private static int i;//注意static修饰的变量,每次调用这个方法的时候都是对同一个变量进行修改的。//所以第二次调用该方法的时候,i不为0.所以需要在while循环中将i置0/使用非静态方法private static TreeNode createTree(String str) {TreeNode root = null;if (str.charAt(i) != '#') {root = new TreeNode(str.charAt(i));i++;root.left = createTree(str);root.right = createTree(str);}else {i++;}return root;
}//中序遍历private static void inOrder(TreeNode root) {if(root == null) {return;}inOrder(root.left);System.out.print(root.val + " ");inOrder(root.right);}public static void main(String[] args) {Scanner in = new Scanner(System.in);// 注意 hasNext 和 hasNextLine 的区别while (in.hasNextLine()) { // 注意 while 处理多个 caseString str = in.nextLine();i = 0;TreeNode root = createTree(str);inOrder(root);}}
}
k.对称二叉树
题析:
题解:
class Solution {private boolean isSymmetricChild(TreeNode leftNode, TreeNode rightNode) {if(leftNode == null && rightNode != null || rightNode == null && leftNode != null){return false;}if(leftNode == null && rightNode == null) {return true;}if(leftNode.val != rightNode.val) {return false;}return isSymmetricChild(leftNode.left,rightNode.right) && isSymmetricChild(leftNode.right,rightNode.left);}public boolean isSymmetric(TreeNode root) {return isSymmetricChild(root.left, root.right);}
}
相关文章:

树与二叉树
前言: 树这个结构想必在日常生活中很常见到,而现在要介绍的是一种独特的数据结构--二叉树。 1.树 (1)定义: 是一种非线性结构,有一个特殊的节点叫做根节点,树没有前驱节点;树是递…...

SpringBoot+Vue实现简单的文件上传(Excel篇)
SpringBootVue实现简单的文件上传 1 环境 SpringBoot 3.2.1,Vue 2,ElementUI 2 页面 3 效果:只能上传xls文件且大小限制为2M,选择文件后自动上传。 4 前端代码 <template><div class"container"><el…...

科研绘图系列:R语言金字塔图(pyramid plot)
介绍 金字塔图(Pyramid chart)是一种用于展示人口统计数据的图表,特别是用于展示不同年龄段的人口数量。这种图表通常用于展示人口结构,比如性别和年龄的分布。 特点: 年龄分层:金字塔图按年龄分层,每一层代表一个年龄组。性别区分:通常,男性和女性的数据会被分别展…...

Tomcat多实例
一、Tomcat多实例 Tomcat多实例是指在同一台服务器上运行多个独立的tomcat实例,每个tomcat实例都具有独立的配置文件、日志文件、应用程序和端口,通过配置不同的端口和文件目录,可以实现同时运行多个独立的Tomcat服务器,每个服务…...

前端Vue组件化实践:自定义加载组件的探索与应用
在前端开发领域,随着业务逻辑复杂度的提升和系统规模的不断扩大,传统的开发方式逐渐暴露出效率低下、维护困难等问题。为了解决这些挑战,组件化开发作为一种高效、灵活的开发模式,受到了越来越多开发者的青睐。本文将结合实践&…...

半小时获得一张ESG入门证书【详细中英文笔记一】
前些日子,有朋友转发了一则小红书的笔记给我, 标题是《半小时获CFI官方高颜值免费证书 ESG认证》。这对考证狂魔的我来说,必然不能错过啊,有免费的羊毛不薅白不薅。 ESG课程的 CFI 官方网址戳这里:CFI 于是信心满满的…...
类形断言和和类型推导的区别是什么?
类型断言(Type Assertion)和类型推导(Type Inference)在TypeScript中的区别 如下: 定义: 类型断言:是程序员明确指定一个值的类型,即允许变量从一种类型更改为另一种类型。它不会进行…...

Spring-Spring、IoC、DI、注解开发
1、Spring是什么 Spring是一个轻量级的控制反转(IoC)和面向切面(AOP)的容器(框架)。 Spring整体架构 Spring优点: Spring属于低侵入设计。IOC将对象之间的依赖关系交给Spring,降低组件之间的耦合,实现各个层之间的解耦,让我们更专注于业务…...

Facebook的未来蓝图:从元宇宙到虚拟现实的跨越
随着科技的不断演进和社会的数字化转型,虚拟现实(VR)和增强现实(AR)作为下一代计算平台正逐渐走进人们的视野。作为全球领先的科技公司之一,Facebook正在积极探索并推动这一领域的发展,以实现其…...
Redis6.2.1版本集群新加副本
测试数据 通过redis-benchmark生成测试数据 ./bin/redis-benchmark -h 172.31.4.18 -p 6381 -a Redis_6.2.1_Sc --cluster -t set -d 128 -n 10000000 -r 100000000 -c 200新加节点 172.31.4.18:6381> AUTH Redis_6.2.1_Sc OK172.31.4.18:6381> cluster meet 172.31.4…...

2.The DispatcherServlet
The DispatcherServlet Spring的Web MVC框架与许多其他Web MVC框架一样,是请求驱动的,围绕一个中央Servlet(即DispatcherServlet)设计,该Servlet将请求分派给控制器,并提供其他功能以促进Web应用程序的开发…...
bug定位策略
前提--用户环境层面 hosts异常:hosts文件主要是加快某个域名或者网站的解析速度,从而达到快速访问的作用,也可以屏蔽网站。hosts异常可能会导致部分网页无法访问,能够加载,但是网页无法正常显示;测试环境脏…...

基于R语言的水文、水环境模型优化技术及快速率定方法与多模型案例
在水利、环境、生态、机械以及航天等领域中,数学模型已经成为一种常用的技术手段。同时,为了提高模型的性能,减小模型误用带来的风险;模型的优化技术也被广泛用于模型的使用过程。模型参数的快速优化技术不但涉及到优化本身而且涉…...

内存函数(C语言)
内存函数 以下函数的头文件:string.h 针对内存块进行处理的函数 memcpy 函数原型: void* memcpy(void* destination, const void* source, size_t num);目标空间地址 源空间地址num,被拷贝的字节个数 返回目标空间的起始地…...
力扣 哈希表刷题回顾
哈希表理论总结 什么时候用哈希表,快速判断一个元素是否出现在集合中时,用哈希这种空间换时间的方法。 哈希函数与哈希碰撞 哈希函数是指将key映射到对应的哈希表上 哈希碰撞是指映射的过程中容易出现多对一的情况,用什么方法解决拉链法和…...

Qt 统计图编程
学习目标:Qt 折线图,柱形图和扇形统计图编程 学习基础 Qt QChart 曲线图表操作-CSDN博客 学习内容 Qt中绘制三种常见的图表非常方便, 主要步骤如下: 1. 折线图: - 使用QLineSeries定义折线数据,添加多个坐标点 - 使用QValueAxis创建X轴和Y轴 - 将…...

SQL中的谓词与谓词下推
在 SQL 查询中,谓词(Predicate)是用来对数据进行过滤的条件。它们决定了数据从数据库表中被选择的条件。理解和正确使用 SQL 谓词对于编写高效查询至关重要。 目录 什么是谓词?一个真实的故事SQL 谓词的代码示例比较谓词逻辑谓词…...

浅聊授权-spring security和oauth2
文章目录 前言自定义授权spring security授权oauth2授权概述 前言 通常说到授权,就会想到登录授权、token令牌、JWT等概念,授权。顾名思义就是服务器授予了客户端访问资源的权益,那么要实现授权有几种方案呢,三种授权方式在公司项…...

时间复杂度计算
目录 时间复杂性 ⼤O的渐进表⽰法 时间复杂性 定义:在计算机科学中,算法的时间复杂度是⼀个函数式T(N),它定量描述了该算法的运⾏时间。 时间复杂度是衡量程序的时间效率,那么为什么不去计算程序的运⾏时间呢? 1.…...
React 18 + Babel 7 + Webpack 5 开发环境搭建
文章目录 一、基础开发环境搭建1. 新建项目目录2. 项目目录结构及内容3. 安装 React 18 Babel 7 Webpack 54. 配置 Babel 和 Webpack5. 调试/构建项目 二、扩展项目支持的能力(待补充)1. JS 扩展(待补充)2. CSS 扩展(…...
【网络】每天掌握一个Linux命令 - iftop
在Linux系统中,iftop是网络管理的得力助手,能实时监控网络流量、连接情况等,帮助排查网络异常。接下来从多方面详细介绍它。 目录 【网络】每天掌握一个Linux命令 - iftop工具概述安装方式核心功能基础用法进阶操作实战案例面试题场景生产场景…...

2.Vue编写一个app
1.src中重要的组成 1.1main.ts // 引入createApp用于创建应用 import { createApp } from "vue"; // 引用App根组件 import App from ./App.vue;createApp(App).mount(#app)1.2 App.vue 其中要写三种标签 <template> <!--html--> </template>…...

智能在线客服平台:数字化时代企业连接用户的 AI 中枢
随着互联网技术的飞速发展,消费者期望能够随时随地与企业进行交流。在线客服平台作为连接企业与客户的重要桥梁,不仅优化了客户体验,还提升了企业的服务效率和市场竞争力。本文将探讨在线客服平台的重要性、技术进展、实际应用,并…...

04-初识css
一、css样式引入 1.1.内部样式 <div style"width: 100px;"></div>1.2.外部样式 1.2.1.外部样式1 <style>.aa {width: 100px;} </style> <div class"aa"></div>1.2.2.外部样式2 <!-- rel内表面引入的是style样…...
工业自动化时代的精准装配革新:迁移科技3D视觉系统如何重塑机器人定位装配
AI3D视觉的工业赋能者 迁移科技成立于2017年,作为行业领先的3D工业相机及视觉系统供应商,累计完成数亿元融资。其核心技术覆盖硬件设计、算法优化及软件集成,通过稳定、易用、高回报的AI3D视觉系统,为汽车、新能源、金属制造等行…...
根据万维钢·精英日课6的内容,使用AI(2025)可以参考以下方法:
根据万维钢精英日课6的内容,使用AI(2025)可以参考以下方法: 四个洞见 模型已经比人聪明:以ChatGPT o3为代表的AI非常强大,能运用高级理论解释道理、引用最新学术论文,生成对顶尖科学家都有用的…...
Web 架构之 CDN 加速原理与落地实践
文章目录 一、思维导图二、正文内容(一)CDN 基础概念1. 定义2. 组成部分 (二)CDN 加速原理1. 请求路由2. 内容缓存3. 内容更新 (三)CDN 落地实践1. 选择 CDN 服务商2. 配置 CDN3. 集成到 Web 架构 …...

基于Java+MySQL实现(GUI)客户管理系统
客户资料管理系统的设计与实现 第一章 需求分析 1.1 需求总体介绍 本项目为了方便维护客户信息为了方便维护客户信息,对客户进行统一管理,可以把所有客户信息录入系统,进行维护和统计功能。可通过文件的方式保存相关录入数据,对…...
快刀集(1): 一刀斩断视频片头广告
一刀流:用一个简单脚本,秒杀视频片头广告,还你清爽观影体验。 1. 引子 作为一个爱生活、爱学习、爱收藏高清资源的老码农,平时写代码之余看看电影、补补片,是再正常不过的事。 电影嘛,要沉浸,…...
Kafka主题运维全指南:从基础配置到故障处理
#作者:张桐瑞 文章目录 主题日常管理1. 修改主题分区。2. 修改主题级别参数。3. 变更副本数。4. 修改主题限速。5.主题分区迁移。6. 常见主题错误处理常见错误1:主题删除失败。常见错误2:__consumer_offsets占用太多的磁盘。 主题日常管理 …...