当前位置: 首页 > news >正文

树与二叉树

前言:

树这个结构想必在日常生活中很常见到,而现在要介绍的是一种独特的数据结构--二叉树。

1.树

(1)定义:

是一种非线性结构,有一个特殊的节点叫做根节点,树没有前驱节点;树是递归定义的;树形结构中子树不能有交集,否则就不是树形结构。

(2)树相关重要概念:(如上图)

节点的度:一个节点含有的子树的个数。eg:A的度为2,B的度为3。

树的度:一棵树中,所有节点的度中的最大值。 eg:树的度为3.

叶子节点/终端节点:节点的度为0的节点。eg:叶子节点:E,D,G,F

双亲节点/父节点:若有一个节点含有子节点,则称这个节点为该子节点的双亲节点/父节点。

孩子节点/子节点:一个节点含有的子树的根节点称为该节点的子节点。

根节点:一颗树中,没有双亲节点的节点。

节点的层次:从根节点开始,根为第一层,根的子节点为第二层,以此类推。

树的高度/深度:树中节点的最大层次。eg:树的深度/高度为3.

2.二叉树

(1)定义:

该树中每个节点的度都小于等于2;且子树有左右子树之分。下图都是二叉树。

(2)两种特殊的二叉树:

a.完全二叉树:如果一颗树的节点个数为n,深度为K,且树中每一个节点都是深度为K的满二叉树中编号从0~(n-1)的节点,则称为完全二叉树。

b.满二叉树:每层节点数都是最大值 => 如果一颗树的高度为n,且树节点的总数为2^n-1,则称为满二叉树。

(3)二叉树的性质:

a.若根节点的层数为1,则一颗非空二叉树的第i层上的节点最多有2^{i-1}个。

b.若规定只有根节点的二叉树的深度为1,则深度为K的二叉树节点总数最多为2^{k}-1

c.对任何一颗二叉树,如果叶子节点的个数为n_0{},节点的度为2的节点个数为n_2{},则n_2{}+1=n_0{}

d.具有n个节点的完全二叉树,则该树的深度为\log_{2}\left ( n+1 \right )向上取整。

e.对于具有n个节点的完全二叉树,如果按照从上到下,从左到右的顺序对所有节点,从0开始编号,对于第i个节点有:

如果i>0,则双亲节点/父节点:\frac{i-1}{2};如果i=0,则没有双亲节点/父节点;

如果2i+1<n,则该节点有左孩子;否则没有左孩子。

如果2i+2<n,则该节点有右孩子;否则没有右孩子。

 f.对于一颗完全二叉树来说,如果该树节点总数为偶数个,则节点的度为1的节点只有一个;若为奇数个,则没有节点的度为1的节点。

(4)二叉树的遍历及其代码实现:

在实现二叉树的遍历之前,首先需要创建一个类TreeNode(二叉树的节点,包含该节点的值,该节点的左孩子节点,该节点的右孩子节点),所以:

class TreeNode {public TreeNode left;//左孩子public TreeNode right;//右孩子public int val;public TreeNode(int val) {this.val = val;}
}

a.前序遍历:根节点 -> 左子树 -> 右子树

分析:

代码实现:

public void preorderTraversal(TreeNode root) {if(root == null) {return;}System.out.print(root.val + " ");preorderTraversal(root.left);preorderTraversal(root.right);
}

b.中序遍历:左子树 -> 根节点 -> 右子树

分析:

代码实现:

public void inorderTraversal(TreeNode root) {if(root == null) {return;}preorderTraversal(root.left);System.out.print(root.val + " ");preorderTraversal(root.right);
}

c.后序遍历:左子树 -> 右子树 -> 根节点

分析:

代码实现:

public void lastorderTraversal(TreeNode root) {if(root == null) {return;}preorderTraversal(root.left);preorderTraversal(root.right);System.out.print(root.val + " ");
}

(5)二叉树相关OJ题:

二叉树所有的题都会涉及到递归。所有OJ题的前提都是已经创建好了一颗树,并且知道根节点为root。

a.求树的高度。

题析:

题解:

public int getHeight(TreeNode root) {if(root == null) {return 0;}int leftHeight = getHeight(root.left);int rightHeight = getHeight(root.right);return Math.max(leftHeight,rightHeight) + 1;//这里也可以用条件运算符
}

b.求树中叶子节点的个数。

题析:

 题解:

public int getLeafNodeCount(TreeNode root) {if(root == null) {return 0;}if(root.left == null && root.right == null) {return 1;}    return getLeafNodeCount(root.left) + getLeafNodeCount(root.right);
}

c.第i层有多少个节点。

题析:

题解:

public int getKLevelNodeCount(TreeNode root, int k) {if(root == null) {return 0;}if(k == 1) {return 1;}return getKLevelNodeCount(root.left, k - 1) + getKLevelNodeCount(root.right, k - 1);
}

 d.判断某个val值是否存在于树中。

题析:

题解:

public TreeNode getVal(TreeNode root, int val) {if(root == null) {return null;}if(root.val == val) {return root;}TreeNode leftTree = getVal(root.left,val);if(leftTree != null) {return leftTree;}TreeNode rightTree = getVal(root.right,val);if(rightTree != null) {return rightTree;}return null;
}

e.节点的总个数。

题析:

题解:

public int size(TreeNode root) {if(root == null) {return 0;}return size(root.left) + size(root.right) + 1;
}

 f.检查两棵树是否相同

题析:

题解:

class Solution {public boolean isSameTree(TreeNode p, TreeNode q) {if(p == null && q == null) {return true;}if(p == null && q != null || q == null && p != null) {return false;}if(p.val != q.val) {return false;}return isSameTree(p.left, q.left) && isSameTree(p.right, q.right);}
}

 g.另一棵树的子树

题析:

题解:

class Solution {//判断两棵树的结构是否相同private boolean isSameTree(TreeNode p, TreeNode q) {if(p == null && q == null) {return true;}if(p == null && q != null || q == null && p != null) {return false;}if(p.val != q.val) {return false;}return isSameTree(p.left, q.left) && isSameTree(p.right, q.right);}public boolean isSubtree(TreeNode root, TreeNode subRoot) {if(root == null) {return false;}if(isSameTree(root,subRoot)) {return true; }return isSubtree(root.left,subRoot) || isSubtree(root.right,subRoot);}
}

 h.翻转二叉树

题析:

题解:

法一:该种方法没有利用返回值(先序遍历)。

class Solution {public TreeNode invertTree(TreeNode root) {if(root == null) {return null;}if(root.left == null && root.right == null) {return root;}TreeNode tmp = root.left;root.left = root.right;root.right = tmp;invertTree(root.left);invertTree(root.right);return root;}
}

 法二:利用返回值(后序遍历)。

class Solution {public TreeNode invertTree(TreeNode root) {if(root == null) {return null;}if(root.left == null && root.right == null) {return root;}TreeNode leftNode = invertTree(root.left);TreeNode rightNode = invertTree(root.right);root.left = rightNode;root.right = leftNode;return root;}
}

i.是否为平衡二叉树

题析:

题解:

法一:该方法的时间复杂度为O\left ( n^{2} \right )

class Solution {public boolean isBalanced(TreeNode root) {if(root == null) {return true;}int leftHeight = getHeight(root.left);int rightHeight = getHeight(root.right);if(Math.abs(leftHeight - rightHeight) > 1) {return false;}  return isBalanced(root.left) && isBalanced(root.right);}private int getHeight(TreeNode root) {if(root == null) {return 0;}int leftHigh = getHeight(root.left);int rightHigh = getHeight(root.right);return Math.max(leftHigh,rightHigh) + 1;}
}

 法二:可以实现时间复杂度为O\left ( n\right ),只需要去修改getHeight方法,在求高度的过程中去判断是否每一个节点的高度差 <= 1。

题解:

class Solution {public boolean isBalanced(TreeNode root) {if(root == null) {return true;}return getHeight(root) >= 0;}private int getHeight(TreeNode root) {if(root == null) {return 0;}int leftHigh = getHeight(root.left);if(leftHigh == -1) {return -1;}int rightHigh = getHeight(root.right);if(rightHigh >= 0 && Math.abs(leftHigh - rightHigh) <= 1) {return Math.max(leftHigh,rightHigh) + 1;}return -1;}
}

j.二叉树的构建与遍历

题析:

题解:

import java.util.Scanner;
class TreeNode {public char val;public TreeNode left;public TreeNode right;public TreeNode(char val) {this.val = val;}
}public class Main {private static int i;//注意static修饰的变量,每次调用这个方法的时候都是对同一个变量进行修改的。//所以第二次调用该方法的时候,i不为0.所以需要在while循环中将i置0/使用非静态方法private static TreeNode createTree(String str) {TreeNode root = null;if (str.charAt(i) != '#') {root = new TreeNode(str.charAt(i));i++;root.left = createTree(str);root.right = createTree(str);}else {i++;}return root;
}//中序遍历private static void inOrder(TreeNode root) {if(root == null) {return;}inOrder(root.left);System.out.print(root.val + " ");inOrder(root.right);}public static void main(String[] args) {Scanner in = new Scanner(System.in);// 注意 hasNext 和 hasNextLine 的区别while (in.hasNextLine()) { // 注意 while 处理多个 caseString str = in.nextLine();i = 0;TreeNode root = createTree(str);inOrder(root);}}
}

 k.对称二叉树

题析:

题解:

class Solution {private boolean isSymmetricChild(TreeNode leftNode, TreeNode rightNode) {if(leftNode == null && rightNode != null || rightNode == null && leftNode != null){return false;}if(leftNode == null && rightNode == null) {return true;}if(leftNode.val != rightNode.val) {return false;}return isSymmetricChild(leftNode.left,rightNode.right) &&             isSymmetricChild(leftNode.right,rightNode.left);}public boolean isSymmetric(TreeNode root) {return isSymmetricChild(root.left, root.right);}
}

 

相关文章:

树与二叉树

前言&#xff1a; 树这个结构想必在日常生活中很常见到&#xff0c;而现在要介绍的是一种独特的数据结构--二叉树。 1.树 &#xff08;1&#xff09;定义&#xff1a; 是一种非线性结构&#xff0c;有一个特殊的节点叫做根节点&#xff0c;树没有前驱节点&#xff1b;树是递…...

SpringBoot+Vue实现简单的文件上传(Excel篇)

SpringBootVue实现简单的文件上传 1 环境 SpringBoot 3.2.1&#xff0c;Vue 2&#xff0c;ElementUI 2 页面 3 效果&#xff1a;只能上传xls文件且大小限制为2M&#xff0c;选择文件后自动上传。 4 前端代码 <template><div class"container"><el…...

科研绘图系列:R语言金字塔图(pyramid plot)

介绍 金字塔图(Pyramid chart)是一种用于展示人口统计数据的图表,特别是用于展示不同年龄段的人口数量。这种图表通常用于展示人口结构,比如性别和年龄的分布。 特点: 年龄分层:金字塔图按年龄分层,每一层代表一个年龄组。性别区分:通常,男性和女性的数据会被分别展…...

Tomcat多实例

一、Tomcat多实例 Tomcat多实例是指在同一台服务器上运行多个独立的tomcat实例&#xff0c;每个tomcat实例都具有独立的配置文件、日志文件、应用程序和端口&#xff0c;通过配置不同的端口和文件目录&#xff0c;可以实现同时运行多个独立的Tomcat服务器&#xff0c;每个服务…...

前端Vue组件化实践:自定义加载组件的探索与应用

在前端开发领域&#xff0c;随着业务逻辑复杂度的提升和系统规模的不断扩大&#xff0c;传统的开发方式逐渐暴露出效率低下、维护困难等问题。为了解决这些挑战&#xff0c;组件化开发作为一种高效、灵活的开发模式&#xff0c;受到了越来越多开发者的青睐。本文将结合实践&…...

半小时获得一张ESG入门证书【详细中英文笔记一】

前些日子&#xff0c;有朋友转发了一则小红书的笔记给我&#xff0c; 标题是《半小时获CFI官方高颜值免费证书 ESG认证》。这对考证狂魔的我来说&#xff0c;必然不能错过啊&#xff0c;有免费的羊毛不薅白不薅。 ESG课程的 CFI 官方网址戳这里&#xff1a;CFI 于是信心满满的…...

类形断言和和类型推导的区别是什么?

类型断言&#xff08;Type Assertion&#xff09;和类型推导&#xff08;Type Inference&#xff09;在TypeScript中的区别 如下&#xff1a; 定义&#xff1a; 类型断言&#xff1a;是程序员明确指定一个值的类型&#xff0c;即允许变量从一种类型更改为另一种类型。它不会进行…...

Spring-Spring、IoC、DI、注解开发

1、Spring是什么 Spring是一个轻量级的控制反转(IoC)和面向切面(AOP)的容器(框架)。 Spring整体架构 Spring优点&#xff1a; Spring属于低侵入设计。IOC将对象之间的依赖关系交给Spring,降低组件之间的耦合&#xff0c;实现各个层之间的解耦&#xff0c;让我们更专注于业务…...

Facebook的未来蓝图:从元宇宙到虚拟现实的跨越

随着科技的不断演进和社会的数字化转型&#xff0c;虚拟现实&#xff08;VR&#xff09;和增强现实&#xff08;AR&#xff09;作为下一代计算平台正逐渐走进人们的视野。作为全球领先的科技公司之一&#xff0c;Facebook正在积极探索并推动这一领域的发展&#xff0c;以实现其…...

Redis6.2.1版本集群新加副本

测试数据 通过redis-benchmark生成测试数据 ./bin/redis-benchmark -h 172.31.4.18 -p 6381 -a Redis_6.2.1_Sc --cluster -t set -d 128 -n 10000000 -r 100000000 -c 200新加节点 172.31.4.18:6381> AUTH Redis_6.2.1_Sc OK172.31.4.18:6381> cluster meet 172.31.4…...

2.The DispatcherServlet

The DispatcherServlet Spring的Web MVC框架与许多其他Web MVC框架一样&#xff0c;是请求驱动的&#xff0c;围绕一个中央Servlet&#xff08;即DispatcherServlet&#xff09;设计&#xff0c;该Servlet将请求分派给控制器&#xff0c;并提供其他功能以促进Web应用程序的开发…...

bug定位策略

前提--用户环境层面 hosts异常&#xff1a;hosts文件主要是加快某个域名或者网站的解析速度&#xff0c;从而达到快速访问的作用&#xff0c;也可以屏蔽网站。hosts异常可能会导致部分网页无法访问&#xff0c;能够加载&#xff0c;但是网页无法正常显示&#xff1b;测试环境脏…...

基于R语言的水文、水环境模型优化技术及快速率定方法与多模型案例

在水利、环境、生态、机械以及航天等领域中&#xff0c;数学模型已经成为一种常用的技术手段。同时&#xff0c;为了提高模型的性能&#xff0c;减小模型误用带来的风险&#xff1b;模型的优化技术也被广泛用于模型的使用过程。模型参数的快速优化技术不但涉及到优化本身而且涉…...

内存函数(C语言)

内存函数 以下函数的头文件&#xff1a;string.h 针对内存块进行处理的函数 memcpy 函数原型&#xff1a; void* memcpy(void* destination, const void* source, size_t num);目标空间地址 源空间地址num&#xff0c;被拷贝的字节个数 返回目标空间的起始地…...

力扣 哈希表刷题回顾

哈希表理论总结 什么时候用哈希表&#xff0c;快速判断一个元素是否出现在集合中时&#xff0c;用哈希这种空间换时间的方法。 哈希函数与哈希碰撞 哈希函数是指将key映射到对应的哈希表上 哈希碰撞是指映射的过程中容易出现多对一的情况&#xff0c;用什么方法解决拉链法和…...

Qt 统计图编程

学习目标&#xff1a;Qt 折线图&#xff0c;柱形图和扇形统计图编程 学习基础 Qt QChart 曲线图表操作-CSDN博客 学习内容 Qt中绘制三种常见的图表非常方便, 主要步骤如下: 1. 折线图: - 使用QLineSeries定义折线数据,添加多个坐标点 - 使用QValueAxis创建X轴和Y轴 - 将…...

SQL中的谓词与谓词下推

在 SQL 查询中&#xff0c;谓词&#xff08;Predicate&#xff09;是用来对数据进行过滤的条件。它们决定了数据从数据库表中被选择的条件。理解和正确使用 SQL 谓词对于编写高效查询至关重要。 目录 什么是谓词&#xff1f;一个真实的故事SQL 谓词的代码示例比较谓词逻辑谓词…...

浅聊授权-spring security和oauth2

文章目录 前言自定义授权spring security授权oauth2授权概述 前言 通常说到授权&#xff0c;就会想到登录授权、token令牌、JWT等概念&#xff0c;授权。顾名思义就是服务器授予了客户端访问资源的权益&#xff0c;那么要实现授权有几种方案呢&#xff0c;三种授权方式在公司项…...

时间复杂度计算

目录 时间复杂性 ⼤O的渐进表⽰法 时间复杂性 定义&#xff1a;在计算机科学中&#xff0c;算法的时间复杂度是⼀个函数式T(N)&#xff0c;它定量描述了该算法的运⾏时间。 时间复杂度是衡量程序的时间效率&#xff0c;那么为什么不去计算程序的运⾏时间呢&#xff1f; 1.…...

React 18 + Babel 7 + Webpack 5 开发环境搭建

文章目录 一、基础开发环境搭建1. 新建项目目录2. 项目目录结构及内容3. 安装 React 18 Babel 7 Webpack 54. 配置 Babel 和 Webpack5. 调试/构建项目 二、扩展项目支持的能力&#xff08;待补充&#xff09;1. JS 扩展&#xff08;待补充&#xff09;2. CSS 扩展&#xff08…...

MongoDB Shard 集群 Docker 部署

MongoDB Shard Docker 部署 部署环境 主机地址主机配置主机系统Mongodb1/192.168.31.1352CPU 4GBDebian12Mongodb2/192.168.31.1092CPU 4GBDebian12Mongodb3/192.168.31.1652CPU 4GBDebian12 镜像版本 mongodb/mongodb-community-server:5.0.27-ubuntu2004 部署集群 部署…...

MacOS 开发 — Packages 程序 macOS新版本 演示选项卡无法显示

MacOS 开发 — Packages 程序 macOS新版本 演示选项卡无法显示 问题描述 &#xff1a; 之前写过 Packages 的使用以及如何打包macOS程序。最近更新了新的macOS系统&#xff0c;发现Packages的演示选项卡无法显示&#xff0c;我尝试从新安转了Packages 也是没作用&#xff0c;…...

Hive的分区表分桶表

1.分区表&#xff1a; 是Hive中的一种表类型&#xff0c;通过将表中的数据划分为多个子集&#xff08;分区&#xff09;&#xff0c;每个分区对应表中的某个特定的列值&#xff0c;可以提高查询性能和管理数据的效率。分区表的每个分区存储在单独的目录中&#xff0c;分区的定义…...

PostgreSQL17索引优化之支持并行创建BRIN索引

PostgreSQL17索引优化之支持并行创建BRIN索引 最近连续写了几篇关于PostgreSQL17优化器改进的文章&#xff0c;其实感觉还是挺有压力的。对于原理性的知识点&#xff0c;一方面是对这些新功能也不熟悉&#xff0c;为了尽可能对于知识点表述或总结做到准确&#xff0c;因此需要…...

在Vue中,子组件向父组件传递数据

在Vue中&#xff0c;子组件向父组件传递数据通常通过两种方式实现&#xff1a;事件和回调函数。这两种方式允许子组件与其父组件进行通信&#xff0c;传递数据或触发特定的行为。 1. 通过事件传递数据 子组件可以通过触发自定义事件&#xff0c;并将数据作为事件的参数来向父组…...

数据结构(顺序表)

谈起顺序表&#xff0c;那我们就不得不先来了解一下它的上级概念---线性表 线性表 线性表&#xff08;linear list&#xff09;是n个具有相同特性的数据元素的有限序列。 线性表是⼀种在实际中⼴泛使⽤的数据结构&#xff0c;常⻅的线性表&#xff1a;顺序表、链表、栈、队列…...

MySQL之基本查询(上)-表的增删查改

目录 Create(创建) 案例建表 插入 单行数据 指定列插入 单行数据 全列插入 多行数据 全列插入 插入是否更新 插入时更新 替换 Retrieve(读取) 建表插入 select列 全列查询 指定列查询 查询字段为表达式 为查询结果指定别名 结果去重 where条件 比较运算符 逻辑运…...

RocketMQ源码学习笔记:Producer发送消息流程

这是本人学习的总结&#xff0c;主要学习资料如下 马士兵教育rocketMq官方文档 目录 1、Overview2、验证消息3、查找路由4、选择消息发送队列4.1、选择队列的策略4.2、源码阅读4.2.1、轮询规避4.2.2、故障延迟规避4.2.2.1、计算规避时间4.2.2.2、选择队列 4.2.3、ThreadLocal的…...

kotlin flow collect collectLatest 区别

在 Kotlin 协程库中&#xff0c;collect 和 collectLatest 都是用于收集 Flow 中发射的数据的方法&#xff0c;但它们在处理数据和响应新数据的方式上有所不同。 collect collect 是一个挂起函数&#xff0c;用于收集 Flow 中发射的所有数据。它会按顺序处理每一个发射的数据…...

ELK集群搭建

ELK集群搭建 文章目录 ELK集群搭建1.环境准备2.Elasticsearch环境搭建1.创建es账户并设置密码2.选择对应版本进行下载3.编辑配置文件4.设置JVM堆大小 #7.0默认为4G5.创建es数据及日志存储目录6.修改安装目录和存储目录权限 3.系统优化1.增加最大文件打开数2.增加最大进程数3.增…...