当前位置: 首页 > news >正文

翁恺-C语言程序设计-08-1. 求一批整数中出现最多的个位数字

08-1. 求一批整数中出现最多的个位数字

给定一批整数,分析每个整数的每一位数字,求出现次数最多的个位数字。例如给定3个整数1234、2345、3456,其中出现最多次数的数字是3和4,均出现了3次。

输入格式:

输入在第1行中给出正整数N(<=1000),在第2行中给出N个不超过整型范围的正整数,数字间以空格分隔。

输出格式:

在一行中按格式“M: n1 n2 …”输出,其中M是最大次数,n1、n2、……为出现次数最多的个位数字,按从小到大的顺序排列。数字间以空格分隔,但末尾不得有多余空格。

输入样例:
3
1234 2345 3456
输出样例:
3: 3 4

#include <stdio.h>
#include <string.h>int a[1002];int main()
{int t, i, max = 0;int count[10];scanf("%d", &t);for ( i=0; i<10; i++ ){count[i] = 0;}for ( i=0; i<t; i++ ){scanf("%d", &a[i]);}for ( i=0; i<t; i++ ){while (a[i]){count[a[i]%10]++;a[i] /= 10;}}for ( i=0; i<10; i++ ){if ( max < count[i] ){max = count[i];}}printf("%d:", max);for ( i=0; i<10; i++ ){if ( count[i] == max ){printf(" %d", i);}}printf("\n");return 0;
}

相关文章:

翁恺-C语言程序设计-08-1. 求一批整数中出现最多的个位数字

08-1. 求一批整数中出现最多的个位数字 给定一批整数&#xff0c;分析每个整数的每一位数字&#xff0c;求出现次数最多的个位数字。例如给定3个整数1234、2345、3456&#xff0c;其中出现最多次数的数字是3和4&#xff0c;均出现了3次。 输入格式&#xff1a; 输入在第1行中…...

ROM修改进阶教程------深度解析小米设备锁机型不解锁bl 刷写特殊类固件的步骤

在玩机过程中会遇到很多自己机型忘记密码或者手机号不用导致机型出现账号锁。无法正常使用。那么此类机型如果无法正常售后解锁。只能通过第三方渠道。例如在早期小米机型有强解bl锁资源。然后刷入完美解锁包。这种可以登陆新账号。但后期新机型只能通过修改分区来屏蔽原设备锁…...

论文翻译 | LEAST-TO-MOST: 从最少到最多的提示使大型语言模型中的复杂推理成为可能

摘要 思维链提示&#xff08;Chain-of-thought prompting&#xff09;在多种自然语言推理任务上展现了卓越的性能。然而&#xff0c;在需要解决的问题比提示中展示的示例更难的任务上&#xff0c;它的表现往往不佳。为了克服从简单到困难的泛化挑战&#xff0c;我们提出了一种新…...

【区块链 + 智慧政务】都江堰区块链公共服务应用平台 | FISCO BCOS应用案例

都江堰区块链公共服务应用平台是四川开源观科技有限公司运用 FISCO BCOS 区块链技术为都江堰市建设的市级 区块链节点平台&#xff0c;该平台上线运营一年以来已在政务服务、社区养老和慈善公益领域落地 3 个应用&#xff0c;上链数据超 过 30 万条。 区块链 政务服务应用&am…...

Python从0到100(三十九):数据提取之正则(文末免费送书)

前言&#xff1a; 零基础学Python&#xff1a;Python从0到100最新最全教程。 想做这件事情很久了&#xff0c;这次我更新了自己所写过的所有博客&#xff0c;汇集成了Python从0到100&#xff0c;共一百节课&#xff0c;帮助大家一个月时间里从零基础到学习Python基础语法、Pyth…...

redis redisson(仅供自己参考)

redis 通过setnx实现的分布式锁有问题 如图&#xff1a; 解决的新的工具为&#xff08;闪亮登场&#xff09;&#xff1a;redisson redisson可重入锁的原理 实现语言lua&#xff1a; 加锁实现脚本语言&#xff1a; 释放锁的脚本语言&#xff1a; 加锁的lua -- 首先判断这个锁…...

【C语言初阶】探索编程基础:深入理解分支与循环语句的奥秘

&#x1f4dd;个人主页&#x1f339;&#xff1a;Eternity._ ⏩收录专栏⏪&#xff1a;C语言 “ 登神长阶 ” &#x1f921;往期回顾&#x1f921;&#xff1a;C语言入门 &#x1f339;&#x1f339;期待您的关注 &#x1f339;&#x1f339; ❀分支与循环语句 &#x1f4d2;1.…...

ERP基础知识

ERP 一、概述 ​ ERP是Event-related Potentials的简称。外加一种特定的刺激&#xff0c;作用于感觉系统或脑 的某一部位&#xff0c;在给予刺激或撤销刺激时&#xff0c;或和当某种心理因素出现时在脑区所产生的电位变化&#xff0c;成为事件相关电位&#xff0c;是一种特殊…...

C++是否可以使用.获取union、struct中的成员变量的地址

C可以使用.获取union、struct中的成员变量的地址 示例代码如下所示 #include <stdio.h> #include <stdint.h>struct u128 { uint64_t v64; uint64_t v0; };int main() {union { unsigned __int128 ui; struct u128 s; } union_temp_m128;void* p1 &union_te…...

【前端】包管理器:npm、Yarn 和 pnpm 的全面比较

前端开发中的包管理器&#xff1a;npm、Yarn 和 pnpm 的全面比较 在现代前端开发中&#xff0c;包管理器是开发者必不可少的工具。它们不仅能帮我们管理项目的依赖&#xff0c;还能极大地提高开发效率。本文将详细介绍三种主流的前端包管理器&#xff1a;npm、Yarn 和 pnpm&am…...

C++ 类和对象 赋值运算符重载

前言&#xff1a; 在上文我们知道数据类型分为自定义类型和内置类型&#xff0c;当我想用内置类型比较大小是非常容易的但是在C中成员变量都是在类(自定义类型)里面的&#xff0c;那我想给类比较大小那该怎么办呢&#xff1f;这时候运算符重载就出现了 一 运算符重载概念&…...

【Python实战因果推断】35_双重差分6

目录 Strict Exogeneity No Time Varying Confounders No Feedback No Carryover and No Lagged Dependent Variable Strict Exogeneity 严格的外生性假设是一个相当技术性的假设&#xff0c;通常用固定效应模型的残差来表示&#xff1a; 严格的异质性说明&#xff1a; 这…...

【HarmonyOS】关于官方推荐的组件级路由Navigation的心得体会

前言 最近因为之前的630版本有点忙&#xff0c;导致断更了几天&#xff0c;现在再补上。换换脑子。 目前内测系统的华为应用市场&#xff0c;各种顶级APP陆续都放出来beta版本了&#xff0c;大体上都完成了主流程的开发。欣欣向荣的气息。 学习思路 关于学习HarmonyOS的问题…...

Spring中事件监听器

实现ApplicationListener接口 Configuration public class A48 {public static void main(String[] args) {AnnotationConfigApplicationContext context new AnnotationConfigApplicationContext(A48.class);context.getBean(MyService.class).doBusiness();context.close()…...

案例|LabVIEW连接S7-1200PLC

附带&#xff1a; 写了好的参考文章&#xff1a; 通讯测试工具和博图仿真机的连接教程【内含图文完整过程软件使用】 解决博图V15 V16 V17 V18等高版本和低版本在同款PLC上不兼容的问题 目录 前言一、准备条件二、步骤1. HslCommunicationDemo问题1&#xff1a;连接失败?问题…...

正点原子STM32(基于HAL库)6

目录 TFTLCD&#xff08;MCU 屏&#xff09;实验TFTLCD 简介TFTLCD 简介液晶显示控制器FSMC 简介FSMC 关联寄存器简介 硬件设计程序设计FSMC 和SRAM 的HAL 库驱动程序流程图程序解析 下载验证 LTDC LCD&#xff08;RGB 屏&#xff09;实验RGBLCD<DC 简介RGBLCD 简介LTDC 简介…...

flutter Android端权限

flutter 中权限请求path_provider Android 6.0 - 10.0 (API level 23 - 29)Android 11 (API level 30)具体实现示例注意事项 在 Flutter 中使用 path_provider 插件获取除本应用外所有的 PDF 文件&#xff0c;对于不同的 Android 版本&#xff08;从 Android 6.0 到 Android 14…...

ant design form动态增减表单项Form.List如何进行动态校验规则

项目需求&#xff1a; 在使用ant design form动态增减表单项Form.List时&#xff0c;Form.List中有多组表单项&#xff0c;一组中的最后一个表单项的校验规则是动态的&#xff0c;该组为最后一组时&#xff0c;最后一个表单项是非必填项&#xff0c;其他时候为必填项。假设动态…...

7.16做题总结

今日也是让我看到了繁神的ACM历程&#xff0c;确实&#xff0c;我觉得繁神的历程里面确实有一句很好 不想打算法竞赛了。这是因为有别的事情要做&#xff0c;不是因为我打不动。    不想打比赛凌晨两点才睡了。因为我会困。    不想在群里和高水平选手水群了&#xff0c;因…...

unity使用 MQTT复现plant simulate仿真

unity使用 MQTT复现plant simulate仿真 一、plant simulate端配置 1、plant simulate MQTT组件配置&#xff0c;该组件在类库的信息流类目下&#xff0c;端口不变&#xff0c;填写ip即可&#xff1b; 2、设备配置界面&#xff0c;在控件入口和出口处各挂一个脚本&#xff0c;…...

MATLAB激光通信和-积消息传递算法(Python图形模型算法)模拟调制

&#x1f3af;要点 &#x1f3af;概率论和图论数学形式和图结构 | &#x1f3af;数学形式、图结构和代码验证贝叶斯分类器算法&#xff1a;&#x1f58a;多类型&#xff1a;朴素贝叶斯&#xff0c;求和朴素贝叶斯、高斯朴素贝叶斯、树增强贝叶斯、贝叶斯网络增强贝叶斯和半朴素…...

初识HTML

一 HTML HTML(Hyper Text Markup Language),超⽂本标记语⾔.超文本:⽐⽂本要强⼤.通过链接和交互式⽅式来组织和呈现信息的⽂本形式.不仅仅有⽂本,还可能包含图⽚,⾳频,或者⾃已经审阅过它的学者所加的评注、补充或脚注等等.标记语言:由标签构成的语⾔。 1.HTML代码是由“标签…...

基于Rspack实现大仓应用构建提效实践|得物技术

一、实践背景 随着项目的逐步迭代&#xff0c;代码量和依赖的逐渐增长&#xff0c;应用的构建速度逐步进入缓慢期。以目前所在团队的业务应用来看&#xff08;使用webpack构建&#xff09;&#xff0c;应用整体构建耗时已经普遍偏高&#xff0c;影响日常开发测试的使用效率&am…...

什么是MOW,以bitget钱包为例

元描述&#xff1a;MOW凭借其富有创意的故事情节和广阔的潜力在Solana上脱颖而出。本文深入探讨了其独特的概念和光明的未来。 Mouse in a Cats World (MOW)是一个基于Solana区块链的创新meme项目&#xff0c;它重新构想了一个异想天开且赋予权力的故事。在这个奇幻的宇宙中&am…...

pytorch说明

深度学习中的重要概念&#xff1a; 激活函数&#xff1a; 激活函数的必要性&#xff1a;激活函数不是绝对必须的&#xff0c;但在深度学习中&#xff0c;它们几乎总是被使用。激活函数可以引入非线性&#xff0c;这使得神经网络能够学习更复杂的模式。 激活函数的位置&#x…...

AI语音机器人是否可以设计开放式问题

什么叫开放式提问&#xff1f; 是指提出比较概括、广泛、范围较大的问题&#xff0c;对回答的内容限制不严格&#xff0c;给对方充分自由发挥的余地。 试想一下&#xff0c;就算不是语音机器人&#xff0c;是一个真人销售&#xff0c;和客户沟通时提的问题是开放式的&#xf…...

ModuleNotFoundError: No module named

python脚本执行出现这个错误&#xff0c;检查是否安装了对应的模块&#xff0c;确认已经安装&#xff0c;执行还是出错 原因是我时在c程序中启动执行的python脚本&#xff0c;c程序执行是使用了sudo权限&#xff0c;此时会报错&#xff0c;而在shell中执行python&#xff08;下…...

【操作系统】进程管理——用信号量机制解决问题,以生产者-消费者问题为例(个人笔记)

学习日期&#xff1a;2024.7.10 内容摘要&#xff1a;利用信号量机制解决几个经典问题模型 目录 引言 问题模型 生产者-消费者问题&#xff08;经典&#xff09; 多生产者-多消费者问题 吸烟者问题 读者写者问题&#xff08;难点&#xff09; 哲学家进餐问题&#xff0…...

算法刷题笔记 KMP字符串(C++实现,并给出了求next数组的独家简单理解方式)

文章目录 题目描述基本思路实现代码 题目描述 给定一个字符串S&#xff0c;以及一个模式串P&#xff0c;所有字符串中只包含大小写英文字母以及阿拉伯数字。模式串P在字符串S中多次作为子串出现。求出模式串P在字符串S中所有出现的位置的起始下标。 输入格式 第一行输入整数…...

SpringCloud架构师面试

一、微服务是什么 1、基本概念 微服务是一种架构风格&#xff08;区别于单体架构、垂直架构、分布式架构、SOA架构&#xff09;&#xff0c;应用程序被划分为更小的、流程驱动的服务。 2、微服务的特征 轻量化&#xff1a;将复杂的系统或者服务进行纵向拆分&#xff0c;每个…...