当前位置: 首页 > news >正文

sklearn库学习--SelectKBest 、f_regression

目录

一、SelectKBest 介绍、代码使用

介绍:

代码使用:

二、评分函数

【1】f_regression:

(1)介绍:

(2)F值和相关系数

【2】除了f_regression函数,还有一些适用于回归问题的特征选择评价函数。

一、SelectKBest 介绍、代码使用

介绍:

SelectKBest是scikit-learn库中的一个特征选择函数,用于从数据集中选择k个最佳特征。它可以根据给定的评价函数和得分,来选择和排名特征。

SelectKBest可以用于以下两种情况:

  1. 想要减少数据集的维度,仅使用最重要的特征。

  2. 想要获得每个特征的重要程度排名,以便进一步分析。

代码使用:

假设你有一个数据集 X 和对应的标签 y,想要进行特征筛选,只使用最重要的特征来训练模型。你可以使用 Scikit-learn 中的 SelectKBest 类来选择最好的 k 个特征。

以下是示例代码:

import pandas as pd
import numpy as np
from sklearn.feature_selection import SelectKBest, f_regression# 读取数据集
data = pd.read_csv('data.csv')
X = data.drop('label', axis=1) # 特征
y = data['label'] # 标签# 选择最好的5个特征
k = 5
selector = SelectKBest(score_func=f_regression, k=k)
X_new = selector.fit_transform(X, y)# 输出结果
mask = selector.get_support() # 获得特征掩码
new_features = X.columns[mask] # 选择重要的特征
print(new_features)

这个示例中,我们使用 SelectKBest 类和 f_regression 函数来选择最好的5个特征。具体来说,SelectKBest 类会计算每个特征的评分,然后根据评分选择最好的 k 个特征。在本例中,评分函数是 f_regression,这个函数使用 F 检验来计算特征的相关性。最后,我们从原始数据集中选择重要的特征,输出它们的名称。

需要注意的是,如果要使用 SelectKBest 类,特征和标签必须是数值型的。如果你的数据集中有多个特征,你还可以使用其他的评分函数来进行特征筛选,例如卡方检验、互信息法等等。

二、评分函数

【1】f_regression:

(1)介绍:

是scikit-learn库中的一个函数,用于在回归模型中评估每个特征和目标变量之间的关系。它可以计算每个特征和目标变量之间的F值和相关系数,以及计算每个F值对应的p值。

F值越大,表示特征和目标变量之间的相关性越强,p值越小,表示结果越显著。

f_regression函数的使用方法如下:

from sklearn.feature_selection import f_regressionf_values, p_values = f_regression(X, y)  # 计算每个特征和目标变量之间的F值和p值

在上述代码中,X是特征矩阵,y是目标变量。

需要注意的是,f_regression函数只能用于回归问题的特征选择。在分类问题中,需要使用其他评价函数,如卡方检验(chi2)、互信息(mutual_info_classif)等。同时,f_regression函数不会进行特征选择,它只是提供了评价每个特征和目标变量之间相关性的指标,可以作为特征选择算法的评价函数之一。

(2)F值和相关系数

f_regression函数计算每个特征和目标变量之间的关系,其中F值和相关系数的含义如下:

  • F值:指特征和目标变量之间的关系是否显著,是一个统计指标。F值越大,表示特征和目标变量之间的相关性越强。
  • 相关系数:指特征和目标变量之间的线性关系的强度和方向,可以是正相关、负相关或无关。相关系数的取值范围为[-1,1],绝对值越大,表示相关性越强,符号表示相关性的方向。

需要注意的是,F值和相关系数是两个不同的指标,F值反映特征和目标变量之间的关系是否显著,相关系数反映特征和目标变量之间的线性关系的强度和方向。在特征选择中,通常使用F值作为评价函数,选择与目标变量相关性较强的特征,或者使用相关系数作为评价指标,评价每个特征与目标变量之间的关系



【2】除了f_regression函数,还有一些适用于回归问题的特征选择评价函数。

  1. mutual_info_regression:互信息(mutual information)评价函数,可以用于回归问题的特征选择。互信息用于度量特征和目标变量之间的非线性关系,可以捕获特征和目标变量之间的任何关系。mutual_info_regression函数可以计算每个特征和目标变量之间的互信息值。

  2. chi2:卡方检验(chi-squared test)评价函数,可以用于回归问题的特征选择。卡方检验用于度量特征和目标变量之间的关联性,可以应用于离散特征的选择。

  3. f_classif:方差分析(ANOVA)评价函数,可以用于回归问题的特征选择。方差分析用于度量特征和目标变量之间的线性关系,可以捕获特征和目标变量之间的方差相关性。

这些评价函数的使用方法与f_regression函数类似,都是计算每个特征和目标变量之间的关系。使用这些评价函数可以选择与目标变量相关性较强的特征,进一步提高回归模型的准确性。

相关文章:

sklearn库学习--SelectKBest 、f_regression

目录 一、SelectKBest 介绍、代码使用 介绍: 代码使用: 二、评分函数 【1】f_regression: (1)介绍: (2)F值和相关系数 【2】除了f_regression函数,还有一些适用于…...

蓝桥杯刷题第十三天

第一题:特殊日期问题描述对于一个日期,我们可以计算出年份的各个数位上的数字之和,也可以分别计算月和日的各位数字之和。请问从 1900 年 11 月 1 日至 9999 年 12 月 31 日,总共有多少天,年份的数位数字之和等于月的数…...

CPU 和带宽之间的时空权衡

在 从一道面试题看 TCP 的吞吐极限 一文的开始,我提到在环形域上两个数字比较大小的前提是在同一个半圆内,进而得到滑动窗口最大值被限定在一个环形域的一半。 现在来看更为基本的问题。如果序列号只有 2bit,甚至仅有 1bit,保序传…...

ES+Redis+MySQL,这个高可用架构设计太顶了!

一、背景 会员系统是一种基础系统,跟公司所有业务线的下单主流程密切相关。如果会员系统出故障,会导致用户无法下单,影响范围是全公司所有业务线。所以,会员系统必须保证高性能、高可用,提供稳定、高效的基础服务。 …...

【Maven】Maven的常用命令

目录 一、Maven的常用命令 1、compile 编译命令 2、test 测试命令 3 、clean 清理命令 4、package 打包命令 5、 install 安装命令 6、Maven 指令的生命周期 二、maven 的概念模型 💟 创作不易,不妨点赞💚评论❤️收藏💙一…...

python的循环结构

python中有for循环和while循环两种形式。 1. for 循环 可以用for循环来遍历不同类型的对象,如数组、列表、元组、字典、集合或字符串,并对每个元素执行一段代码。 1.1 数组的for循环 用for循环遍历一个数组,并打印出每个元素:…...

五种Python中字典的高级用法

1. 引言 Python中的字典是一种非常有用的数据结构,它允许大家存储键值对。通常来说,字典灵活、高效且易于使用,是Python中最常用的数据结构之一。字典通常被用于统计频率、映射值等任务,但在Python中使用字典也可以达到许多意想不…...

[蓝桥杯单片机]——八到十一届初赛决赛客观题

第八届初赛 一、填空题 采用外部12MHz晶振,经过系统12分频时定时器获得最大定时长度,此时定时器定时脉冲为1MHz,周期为1s,而定时器计时均为16位加法计数器,即计时长度为。 二、 选择题 ①带阻滤波器是指能通过大多数频…...

多线程(初阶)

文章目录一.初始线程(Thread)1.1.线程的概念1.2.线程的优势1.2.1.线程比进程更轻量1.2.2.并发编程1.3.线程和进程的区别二.Thread类方法2.1. java 中创建线程的方法2.1.1. 继承Thread,重写run2.1.2. 实现Ruuable接口2.1.3. 使用匿名内部类,继承Thread2.1.4.使用匿名内部类,实现…...

【Vue从入门到进阶】Node.js安装与配置

✅作者简介:CSDN一位小博主,正在学习前端,欢迎大家一起来交流学习🏆 📃个人主页:白月光777的CSDN博客 🔥系列专栏:Vue从入门到进阶 💬个人格言:但行好事&…...

python 正则使用详解

python 正则使用详解什么是正则在 python 中使用正则一些正则的定义python 正则的方法match 从字符串开头匹配正则返回的结果分析(重要)fullmatch 严格匹配整个字符串search 任意位置开始匹配sub 替换匹配内容subn 以元组方式返回替换结果split 正则切割…...

一个深度学习项目需要什么

DataLoader1.数据预处理在将数据提供给模型之前,DataLoader需要对数据进行预处理。预处理可以包括数据增强、归一化、裁剪、缩放等操作。这些操作可以提高模型的性能和准确度。在处理点云数据时,可以通过最远点下采样到固定的点数。2.读取标签文件我 1 2…...

【Java进阶篇】—— 常用类和基础API

一、String类 1.1 String的特性 java.lang.String 类代表字符串,由final关键字修饰,在赋值后不能改变(常量),不能继承String类String 对象的字符内容是存储在一个字符数组 value[]中的 我们来看一下String在JDK8中的…...

手敲Mybatis(六)-反射工具天花板

历时漫长的岁月,终于鼓起勇气继续研究Mybatis的反射工具类们,简直就是把反射玩出花,但是理解起来还是很有难度的,涉及的内容代码也颇多,所以花费时间也比较浩大,不过当了解套路每个类的功能也好&#xff0c…...

内含18禁~~关于自学\跳槽\转行做网络安全行业的一些建议

作者:Eason_LYC 悲观者预言失败,十言九中。 乐观者创造奇迹,一次即可。 一个人的价值,在于他所拥有的。所以可以不学无术,但不能一无所有! 技术领域:WEB安全、网络攻防 关注WEB安全、网络攻防。…...

春分策划×运维老王主讲:CMDB数据运营精准化公开课启动报名啦!

『CMDB数据运营精准化』 公开直播课 要来了! 👆扫描海报二维码,预约直播 CMDB似乎是运维中永恒的老话题。 提到CMDB很多人都是又爱又恨,爱的是它给我们提供了一个美好的未来,有了CMDB我们可以解决诸多运维中的难题。…...

制作INCA和CANape通用的A2L

文章目录 前言制作A2LA2ML定义MOD_COMMON定义MOD_PAR定义MEMORY_SEGMENTTransportLayer定义PROTOCOL_LAYERDAQ总结前言 由于INCA和CANape是两个不同的公司对XCP协议的实现,所以A2L中也会有不一样的地方,但是在标定时若每次都用两个A2L,是非常不方便的,本文介绍如何设计A2L…...

Python人脸识别

#头文件:import cv2 as cvimport numpy as npimport osfrom PIL import Imageimport xlsxwriterimport psutilimport time#人脸录入def get_image_name(name):name_map {f.split(.)[1]:int(f.split(.)[0]) for f in os.listdir("./picture")}if not name…...

我用Python写了一个下载网站所有内容的软件,可见即可下,室友表示非常好用

Python 写一个下载网站内容的GUI工具,所有内容都能下载,真的太方便了!前言本次要实现的功能效果展示代码实战获取数据GUI部分最后前言 哈喽大家好,我是轻松。 今天我们分享一个用Python写下载视频弹幕评论的代码。 之前自游写了…...

【M365运维】扩充OneDrive存储空间

【问题】E3,E5等订阅许可下&#xff0c;默认的OneDrive存储空间为 1TB&#xff0c;满了之后该如何扩充&#xff1f;【解决】1.运行Powershell2. 链接到Sharepoint Online: Connect-SPOSerivce -url https://<这里通常是公司名>-admin.sharepoint.com3. 定义三个扩充空间时…...

观成科技:隐蔽隧道工具Ligolo-ng加密流量分析

1.工具介绍 Ligolo-ng是一款由go编写的高效隧道工具&#xff0c;该工具基于TUN接口实现其功能&#xff0c;利用反向TCP/TLS连接建立一条隐蔽的通信信道&#xff0c;支持使用Let’s Encrypt自动生成证书。Ligolo-ng的通信隐蔽性体现在其支持多种连接方式&#xff0c;适应复杂网…...

蓝牙 BLE 扫描面试题大全(2):进阶面试题与实战演练

前文覆盖了 BLE 扫描的基础概念与经典问题蓝牙 BLE 扫描面试题大全(1)&#xff1a;从基础到实战的深度解析-CSDN博客&#xff0c;但实际面试中&#xff0c;企业更关注候选人对复杂场景的应对能力&#xff08;如多设备并发扫描、低功耗与高发现率的平衡&#xff09;和前沿技术的…...

企业如何增强终端安全?

在数字化转型加速的今天&#xff0c;企业的业务运行越来越依赖于终端设备。从员工的笔记本电脑、智能手机&#xff0c;到工厂里的物联网设备、智能传感器&#xff0c;这些终端构成了企业与外部世界连接的 “神经末梢”。然而&#xff0c;随着远程办公的常态化和设备接入的爆炸式…...

html-<abbr> 缩写或首字母缩略词

定义与作用 <abbr> 标签用于表示缩写或首字母缩略词&#xff0c;它可以帮助用户更好地理解缩写的含义&#xff0c;尤其是对于那些不熟悉该缩写的用户。 title 属性的内容提供了缩写的详细说明。当用户将鼠标悬停在缩写上时&#xff0c;会显示一个提示框。 示例&#x…...

C#中的CLR属性、依赖属性与附加属性

CLR属性的主要特征 封装性&#xff1a; 隐藏字段的实现细节 提供对字段的受控访问 访问控制&#xff1a; 可单独设置get/set访问器的可见性 可创建只读或只写属性 计算属性&#xff1a; 可以在getter中执行计算逻辑 不需要直接对应一个字段 验证逻辑&#xff1a; 可以…...

Vite中定义@软链接

在webpack中可以直接通过符号表示src路径&#xff0c;但是vite中默认不可以。 如何实现&#xff1a; vite中提供了resolve.alias&#xff1a;通过别名在指向一个具体的路径 在vite.config.js中 import { join } from pathexport default defineConfig({plugins: [vue()],//…...

机器学习的数学基础:线性模型

线性模型 线性模型的基本形式为&#xff1a; f ( x ) ω T x b f\left(\boldsymbol{x}\right)\boldsymbol{\omega}^\text{T}\boldsymbol{x}b f(x)ωTxb 回归问题 利用最小二乘法&#xff0c;得到 ω \boldsymbol{\omega} ω和 b b b的参数估计$ \boldsymbol{\hat{\omega}}…...

Mysql故障排插与环境优化

前置知识点 最上层是一些客户端和连接服务&#xff0c;包含本 sock 通信和大多数jiyukehuduan/服务端工具实现的TCP/IP通信。主要完成一些简介处理、授权认证、及相关的安全方案等。在该层上引入了线程池的概念&#xff0c;为通过安全认证接入的客户端提供线程。同样在该层上可…...

负载均衡器》》LVS、Nginx、HAproxy 区别

虚拟主机 先4&#xff0c;后7...

Linux操作系统共享Windows操作系统的文件

目录 一、共享文件 二、挂载 一、共享文件 点击虚拟机选项-设置 点击选项&#xff0c;设置文件夹共享为总是启用&#xff0c;点击添加&#xff0c;可添加需要共享的文件夹 查询是否共享成功 ls /mnt/hgfs 如果显示Download&#xff08;这是我共享的文件夹&#xff09;&…...