当前位置: 首页 > news >正文

Java8 根据List实体中一个字段去重取最大值,并且根据该字段进行排序

1、前言

某个功能要求需要对一个list对象里数据按照股票分组,并且取分组涨跌幅最大的,返回一个新的list对象,并且按照涨跌幅字段进行排序,这么一连串的要求,如果按照传统的写法,我们需要写一大坨的代码,代码很是啰嗦,我们可以选择使用java8中的Collectors.groupingByCollectors.maxBy 来按照某个字段先进行分组,在取分组中某个最大值,最后收集到一个列表中。话不多说,上代码!
2、主要内容

实体

@Builder
@Data
@ApiModel("个股行情")
public class StockHq implements Serializable {private static final long serialVersionUID = 5061852660593543033L;/*** 表id*/@ApiModelProperty("表id")@TableId(value = "id", type = IdType.AUTO)private Long id;/*** 交易日期*/@ApiModelProperty("交易日期 ")@TableField("trade_date")private Integer tradeDate;/*** 证券id*/@ApiModelProperty("证券id")@TableField("stock_id")private Integer stockId;/*** 股票代码*/@ApiModelProperty("交易日期  ")@TableField("stock_code")private String stockCode;/*** 股票名称*/@ApiModelProperty("股票名称")@TableField("stock_name")private String stockName;@ApiModelProperty("上榜日涨幅")@TableField("price_chg")private BigDecimal priceChg;@ApiModelProperty("收盘价")@TableField("price_now")private BigDecimal priceNow;@ApiModelProperty("成交数量")@TableField("trade_amount")private Integer tradeAmount;@NumberField(type = 1)@ApiModelProperty("成交金额")@TableField("trade_money")private BigDecimal tradeMoney;
}

使用collect方法,结合collect中的Collectors.groupingByCollectors.maxBy

      List<StockHq> stockHqList = new ArrayList<>();stockHqList.add(StockHq.builder().stockCode("603386").stockId(100603386).stockName("骏亚科技").priceChg(new BigDecimal("10.3")).tradeDate(20200101).build());stockHqList.add(StockHq.builder().stockCode("603386").stockId(100603386).stockName("骏亚科技").priceChg(new BigDecimal("9.3")).tradeDate(20200111).build());stockHqList.add(StockHq.builder().stockCode("000737").stockId(200000737).stockName("北方铜业").priceChg(new BigDecimal("1.3")).tradeDate(20240711).build());stockHqList.add(StockHq.builder().stockCode("000737").stockId(200000737).stockName("北方铜业").priceChg(new BigDecimal("134.2")).tradeDate(20240611).build());List<StockHq> lastStockHqList = stockHqList.stream().collect(Collectors.groupingBy(StockHq::getStockCode, Collectors.maxBy(Comparator.comparing(StockHq::getPriceChg)))).values().stream().map(Optional::get).sorted(Comparator.comparing(StockHq::getPriceChg).reversed())//降序.collect(Collectors.toList());//返回一个list

代码就用一行,代码简单名了,特此写文章作为笔记,希望能对你有所帮助。

相关文章:

Java8 根据List实体中一个字段去重取最大值,并且根据该字段进行排序

1、前言 某个功能要求需要对一个list对象里数据按照股票分组&#xff0c;并且取分组涨跌幅最大的&#xff0c;返回一个新的list对象&#xff0c;并且按照涨跌幅字段进行排序&#xff0c;这么一连串的要求&#xff0c;如果按照传统的写法&#xff0c;我们需要写一大坨的代码&am…...

微服务经纬:Eureka驱动的分布式服务网格配置全解

微服务经纬&#xff1a;Eureka驱动的分布式服务网格配置全解 在微服务架构的宏伟蓝图中&#xff0c;服务网格&#xff08;Service Mesh&#xff09;作为微服务间通信的独立层&#xff0c;承担着流量管理、服务发现、故障恢复等关键任务。Eureka&#xff0c;Netflix开源的服务发…...

关于前端数据库可视化库的选择,vue3+antd+g2plot录课计划

之前&#xff1a;antdv 现在&#xff1a;g2plot https://g2plot.antv.antgroup.com/manual/introduction 录课内容&#xff1a;快速入门 图表示例&#xff1a; 选择使用比较广泛的示例类型&#xff0c;录课顺序如下&#xff1a; 1、折线图2、面积图3、柱形图4、条形图5、饼…...

linux进行redis的安装并使用RDB进行数据迁移

现在有两台电脑&#xff0c;分别是A&#xff0c;B&#xff0c;现在我要把A电脑上的redis的数据迁移到B电脑上&#xff0c;B电脑上是没有安装redis的 1.找到A电脑的redis的版本 1.先启动A电脑的redis&#xff0c;一般来说&#xff0c;都是直接在linux的控制台输入&#xff1a;re…...

深入理解Scikit-learn:决策树与随机森林算法详解

用sklearn实现决策树与随机森林 1. 简介 决策树和随机森林是机器学习中的两种强大算法。决策树通过学习数据特征与标签之间的规则来进行预测&#xff0c;而随机森林则是由多棵决策树组成的集成算法&#xff0c;能有效提高模型的稳定性和准确性。 2. 安装sklearn 首先&#…...

AutoHotKey自动热键(十一)下载SciTE4AutoHotkey-Plus的中文增强版脚本编辑器

关于AutoHotkey的专用编辑器, SciTE4AutoHotkey是一个免费的基于 SciTE 的 AutoHotkey 脚本编辑器,除了 DBGp 支持, 它还为 AutoHotkey 提供了语法高亮, 调用提示, 参数信息和自动完成, 以及其他拥有的编辑特性和辅助工具.XDebugClient 是一个基于 .NET Framework 2.0 的简单开…...

Halcon与C++之间的数据转换

HALCON的HTuple类型(元组)功能很强大&#xff0c;可以表示INT、double、string等多种类型数据。当元组中只有一个成员时&#xff0c;HTuple也可表示原子类型 1. haclon -> C //HTuple转int HTuple hTuple 1; int data1 hTuple[0].I(); // data1 1//HTuple转do…...

MybatisPlus 一些技巧

查询简化 SimpleQuery 有工具类 com.baomidou.mybatisplus.extension.toolkit.SimpleQuery 对 selectList 查询后的结果进行了封装&#xff0c;使其可以通过 Stream 流的方式进行处理&#xff0c;从而简化了 API 的调用。 方法 list() 支持对一个列表提取某个字段&#xff…...

定制化服务发现:Eureka中服务实例偏好的高级配置

定制化服务发现&#xff1a;Eureka中服务实例偏好的高级配置 在微服务架构中&#xff0c;服务实例的智能管理和优化是保证系统高效运行的关键。Eureka作为Netflix开源的服务注册与发现框架&#xff0c;提供了丰富的配置选项来满足不同场景下的需求。服务实例偏好配置允许开发者…...

【实战场景】MongoDB迁移的那些事

【实战场景】MongoDB迁移的那些事 开篇词&#xff1a;干货篇【MongoDB迁移的方法】&#xff1a;1. 基于mongodump和mongorestore的迁移一、迁移前准备二、使用mongodump备份数据三、使用mongorestore还原数据四、注意事项 2. 基于MongoDB复制集的迁移一、迁移前准备二、配置新复…...

为什么要使用加密软件?

一、保护数据安全&#xff1a;加密软件通过复杂的加密算法对敏感数据进行加密处理&#xff0c;使得未经授权的人员即使获取了加密数据&#xff0c;也无法轻易解密和获取其中的内容。这极大地提高了数据在存储、传输和使用过程中的安全性。 二、遵守法律法规&#xff1a;在许多国…...

k8s学习笔记——dashboard安装

重装了k8s集群后&#xff0c;重新安装k8s的仪表板&#xff0c;发现与以前安装不一样的地方。主要是镜像下载的问题&#xff0c;由于网络安全以及国外网站封锁的原因&#xff0c;现在很多镜像按照官方提供的仓库地址都下拉不下来&#xff0c;导致安装失败。我查了好几天&#xf…...

AI艺术创作:掌握Midjourney和DALL-E的技巧与策略

AI艺术创作&#xff1a;掌握Midjourney和DALL-E的技巧与策略 AI艺术创作正逐渐成为艺术家和创意工作者们探索新表达方式的重要工具。Midjourney和DALL-E是两款领先的AI绘画工具&#xff0c;它们各有独特的功能和优势。本文将详细介绍如何掌握这两款工具的使用技巧&#xff0c;…...

在Mac上免费恢复误删除的Word文档

Microsoft Word for Mac是一个有用的文字处理应用程序&#xff0c;它与Microsoft Office套件捆绑在一起。该软件的稳定版本包括 Word 2019、2016、2011 等。 Word for Mac 与 Apple Pages 兼容;这允许在不同的操作系统版本中使用Word文档&#xff0c;而不会遇到任何麻烦。 与…...

HarmonyOS 屏幕适配设计

1. armonyOS 屏幕适配设计 1.1. 像素单位 &#xff08;1&#xff09;px (Pixels)   px代表屏幕上的像素点&#xff0c;是手机屏幕分辨率的单位&#xff0c;即屏幕物理像素单位。 &#xff08;2&#xff09;vp (Viewport Percentage)   vp是视口百分比单位&#xff0c;基于…...

Netfilter之连接跟踪(Connection Tracking)和反向 SNAT(Reverse SNAT)

连接跟踪&#xff08;Connection Tracking&#xff09; 连接跟踪是 Netfilter 框架中的一个功能&#xff0c;用于跟踪网络连接的状态和元数据。它使防火墙能够识别和处理数据包属于哪个连接&#xff0c;并在双向通信中正确匹配请求和响应数据包。 工作原理 建立连接&#xf…...

Linux下使用vs code离线安装各种插件

Linux下使用vs code离线安装各种插件 &#xff08;1&#xff09;手动下载插件 插件市场 -> 搜索插件名 -> 右边栏 Download Extension &#xff08;2&#xff09;寻找安装目录 whereis code一般会出现两个目录&#xff0c;选择右边那个/usr/share/code code: /usr/b…...

【常见开源库的二次开发】基于openssl的加密与解密——Base58比特币钱包地址——算法分析(三)

目录&#xff1a; 目录&#xff1a; 一、base58(58进制) 1.1 什么是base58&#xff1f; 1.2 辗转相除法 1.3 base58输出字节数&#xff1a; 二、源码分析&#xff1a; 2.1源代码&#xff1a; 2.2 算法思路介绍&#xff1a; 2.2.1 Base58编码过程&#xff1a; 2.1.2 Base58解码过…...

Linux操作系统——数据库

数据库 sun solaris gnu 1、分类&#xff1a; 大型 中型 小型 ORACLE MYSQL/MSSQL SQLITE DBII powdb 关系型数据库 2、名词&#xff1a; DB 数据库 select update database DBMS 数据…...

【数据结构与算法】希尔排序:基于插入排序的高效排序算法

&#x1f493; 博客主页&#xff1a;倔强的石头的CSDN主页 &#x1f4dd;Gitee主页&#xff1a;倔强的石头的gitee主页 ⏩ 文章专栏&#xff1a;《数据结构与算法》 期待您的关注 ​ 目录 一、引言 二、基本原理 三、实现步骤 四、C语言实现 五、性能分析 1. 时间复杂度…...

CVPR 2025 MIMO: 支持视觉指代和像素grounding 的医学视觉语言模型

CVPR 2025 | MIMO&#xff1a;支持视觉指代和像素对齐的医学视觉语言模型 论文信息 标题&#xff1a;MIMO: A medical vision language model with visual referring multimodal input and pixel grounding multimodal output作者&#xff1a;Yanyuan Chen, Dexuan Xu, Yu Hu…...

阿里云ACP云计算备考笔记 (5)——弹性伸缩

目录 第一章 概述 第二章 弹性伸缩简介 1、弹性伸缩 2、垂直伸缩 3、优势 4、应用场景 ① 无规律的业务量波动 ② 有规律的业务量波动 ③ 无明显业务量波动 ④ 混合型业务 ⑤ 消息通知 ⑥ 生命周期挂钩 ⑦ 自定义方式 ⑧ 滚的升级 5、使用限制 第三章 主要定义 …...

从深圳崛起的“机器之眼”:赴港乐动机器人的万亿赛道赶考路

进入2025年以来&#xff0c;尽管围绕人形机器人、具身智能等机器人赛道的质疑声不断&#xff0c;但全球市场热度依然高涨&#xff0c;入局者持续增加。 以国内市场为例&#xff0c;天眼查专业版数据显示&#xff0c;截至5月底&#xff0c;我国现存在业、存续状态的机器人相关企…...

1.3 VSCode安装与环境配置

进入网址Visual Studio Code - Code Editing. Redefined下载.deb文件&#xff0c;然后打开终端&#xff0c;进入下载文件夹&#xff0c;键入命令 sudo dpkg -i code_1.100.3-1748872405_amd64.deb 在终端键入命令code即启动vscode 需要安装插件列表 1.Chinese简化 2.ros …...

拉力测试cuda pytorch 把 4070显卡拉满

import torch import timedef stress_test_gpu(matrix_size16384, duration300):"""对GPU进行压力测试&#xff0c;通过持续的矩阵乘法来最大化GPU利用率参数:matrix_size: 矩阵维度大小&#xff0c;增大可提高计算复杂度duration: 测试持续时间&#xff08;秒&…...

ArcGIS Pro制作水平横向图例+多级标注

今天介绍下载ArcGIS Pro中如何设置水平横向图例。 之前我们介绍了ArcGIS的横向图例制作&#xff1a;ArcGIS横向、多列图例、顺序重排、符号居中、批量更改图例符号等等&#xff08;ArcGIS出图图例8大技巧&#xff09;&#xff0c;那这次我们看看ArcGIS Pro如何更加快捷的操作。…...

推荐 github 项目:GeminiImageApp(图片生成方向,可以做一定的素材)

推荐 github 项目:GeminiImageApp(图片生成方向&#xff0c;可以做一定的素材) 这个项目能干嘛? 使用 gemini 2.0 的 api 和 google 其他的 api 来做衍生处理 简化和优化了文生图和图生图的行为(我的最主要) 并且有一些目标检测和切割(我用不到) 视频和 imagefx 因为没 a…...

Oracle11g安装包

Oracle 11g安装包 适用于windows系统&#xff0c;64位 下载路径 oracle 11g 安装包...

解析“道作为序位生成器”的核心原理

解析“道作为序位生成器”的核心原理 以下完整展开道函数的零点调控机制&#xff0c;重点解析"道作为序位生成器"的核心原理与实现框架&#xff1a; 一、道函数的零点调控机制 1. 道作为序位生成器 道在认知坐标系$(x_{\text{物}}, y_{\text{意}}, z_{\text{文}}…...

Python 高级应用10:在python 大型项目中 FastAPI 和 Django 的相互配合

无论是python&#xff0c;或者java 的大型项目中&#xff0c;都会涉及到 自身平台微服务之间的相互调用&#xff0c;以及和第三发平台的 接口对接&#xff0c;那在python 中是怎么实现的呢&#xff1f; 在 Python Web 开发中&#xff0c;FastAPI 和 Django 是两个重要但定位不…...