当前位置: 首页 > news >正文

Spring Boot集成qwen:0.5b实现对话功能

1.什么是qwen:0.5b?

模型介绍:

Qwen1.5是阿里云推出的一系列大型语言模型。 Qwen是阿里云推出的一系列基于Transformer的大型语言模型,在大量数据(包括网页文本、书籍、代码等)进行了预训练。

硬件要求:

CPU配置:CPU最低第六代intel酷睿4核,AMD ZEN 4核以上;推荐12代intel酷睿8核,AMD ZEN 8核以上 内存要求:运行内存4G及以上

Qwen 1.5版本的新增功能如下:

6个模型大小,包括0.5B、1.8B、4B(默认)、7B、14B、32B(新)和72B 人类对话模型的偏好显著改善 基础模型和对话模型都支持多语言 所有大小的模型都稳定支持32K上下文长度 原始的Qwen模型提供了四种不同的参数大小:1.8B、7B、14B和72B。

模型功能:

低成本的部署:推理过程的最低内存要求小于2GB。 大规模高质量的训练语料库:模型在超过22万亿个令牌的语料库上进行了预训练,包括中文、英文、多语言文本、代码和数学,涵盖了一般和专业领域。通过大量的消融实验,对预训练语料库的分布进行了优化。 良好的性能:Qwen支持较长的上下文长度(在1.8b、7b和14b参数模型上为8K,在72b参数模型上为32K),在多个中英文下游评估任务(包括常识、推理、代码、数学等)上显著超过了现有的开源模型,甚至在一些基准测试中超过了一些更大规模的模型。 更全面的词汇覆盖:与其他基于中英文词汇的开源模型相比,Qwen使用了超过15万个令牌的词汇表。这个词汇表对于多种语言更友好,使用户在不扩展词汇表的情况下,能够直接增强特定语言的能力。 系统提示:通过使用系统提示,Qwen可以实现角色扮演、语言风格转换、任务设置和行为设置等功能。

模型效果

ModelMMLUC-EvalGSM8KMATHHumanEvalMBPPBBHCMMLU
GPT-486.469.992.045.867.061.886.771.0
Llama2-7B46.832.516.73.312.820.838.231.8
Llama2-13B55.041.429.65.018.930.345.638.4
Llama2-34B62.6-42.26.222.633.044.1-
Llama2-70B69.850.154.410.623.737.758.453.6
Mistral-7B64.147.447.511.327.438.656.744.7
Mixtral-8x7B70.6-74.428.440.260.7--
Qwen1.5-7B61.074.162.520.336.037.440.273.1
Qwen1.5-14B67.678.770.129.237.844.053.777.6
Qwen1.5-32B73.483.577.436.137.249.466.882.3
Qwen1.5-72B77.584.179.534.141.553.465.583.5

2.什么是ollama?

Ollama 是一个便于本地部署和运行大型语言模型(Large Language Models, LLMs)的工具。使用通俗的语言来说,如果你想在自己的电脑上运行如 GPT-3 这样的大型人工智能模型,而不是通过互联网连接到它们,那么 Ollama 是一个实现这一目标的工具。下面我们来详细总结一下 Ollama 的功能和使用场景。

主要功能

  1. 本地运行大型语言模型:Ollama 允许用户在自己的设备上直接运行各种大型语言模型,包括 Llama 2、Mistral、Dolphin Phi 等多种模型。这样用户就可以在没有网络连接的情况下也能使用这些先进的人工智能模型。
  2. 跨平台支持:Ollama 支持 macOS、Windows(预览版)、Linux 以及 Docker,这使得几乎所有主流操作系统的用户都可以利用这个工具。
  3. 语言库和第三方库支持:它提供了一个模型库,用户可以从中下载并运行各种模型。此外,也支持通过 ollama-python 和 ollama-js 等库与其他软件集成。
  4. 快速启动和易于定制:用户只需简单的命令就可以运行模型。对于想要自定义模型的用户,Ollama 也提供了如从 GGUF 导入模型、调整参数和系统消息以及创建自定义提示(prompt)的功能。

3.什么是open-webui?

Open WebUI(以前称为Ollama WebUI)是一款面向大型语言模型(LLMs)的用户友好型Web界面,支持Ollama和兼容OpenAI的API运行。通过一个直观的界面,它为用户提供了一种便捷的方式,与语言模型进行交互、训练和管理。

主要特点

  • 直观的界面:灵感来源于ChatGPT,保证了用户友好的体验。
  • 响应式设计:无论是在桌面还是移动设备上,都能享受到无缝的体验。
  • 快速响应:性能快速且响应迅速。
  • 简明的设置过程:通过Docker或Kubernetes安装,旨在提供无忧的体验。
  • 代码语法高亮:提高代码的可读性。
  • 完整的Markdown和LaTeX支持:为了丰富交互体验,提供广泛的Markdown和LaTeX功能。
  • 本地RAG集成:未来聊天交互的特色功能,通过#命令加载文档或添加文件。
  • 网页浏览功能:使用#命令来丰富聊天体验。
  • 快捷预设支持:使用/命令快速访问预设提示。
  • RLHF注释:通过评分消息帮助构建用于RLHF的数据集。
  • 对话标签:方便地分类和查找特定聊天。
  • 多模型支持:无缝切换不同聊天模型。
  • 多模态支持:允许与支持图像等多模态的模型进行交互。

4.环境准备

ollama

version: '3'services:ollama:image: ollama/ollamacontainer_name: ollamarestart: unless-stoppedports:- 11434:11434volumes:- ./data:/root/.ollama

run

docker-compose up -d

visit http://localhost:11434/   return “Ollama is running ” into the docker shell and run command

ollama pull llama2-chinese:7b

run model llama2-chinese:7b

ollama run llama2-chinese:7b

open-webui

version: '3'services:ollama-webui:image: ghcr.io/open-webui/open-webui:maincontainer_name: ollama-webuirestart: unless-stoppedports:- 11433:8080volumes:- ./data:/app/backend/dataenvironment:- OLLAMA_API_BASE_URL=http://10.11.68.77:11434/api- WEBUI_SECRET_KEY=TkjGEiQ@5K^j

run

docker-compose up -d

http://localhost:11433/

66974

第一次需要注册账号

88

5.代码工程

实验目标

用open ai包对接qwen:0.5b

pom.xml

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd"><parent><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-parent</artifactId><version>3.2.1</version></parent><modelVersion>4.0.0</modelVersion><artifactId>Qwen</artifactId><properties><maven.compiler.source>17</maven.compiler.source><maven.compiler.target>17</maven.compiler.target></properties><dependencies><dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-web</artifactId></dependency><dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-autoconfigure</artifactId></dependency><dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-test</artifactId><scope>test</scope></dependency><dependency><groupId>org.springframework.ai</groupId><artifactId>spring-ai-openai-spring-boot-starter</artifactId><version>0.8.0-SNAPSHOT</version></dependency></dependencies><repositories><repository><id>spring-snapshots</id><name>Spring Snapshots</name><url>https://repo.spring.io/snapshot</url><releases><enabled>false</enabled></releases></repository></repositories><build><pluginManagement><plugins><!-- 配置 Maven Compiler 插件 --><plugin><groupId>org.apache.maven.plugins</groupId><artifactId>maven-compiler-plugin</artifactId><version>3.8.1</version><configuration><fork>true</fork><failOnError>false</failOnError></configuration></plugin><!-- 配置 Maven Surefire 插件 --><plugin><groupId>org.apache.maven.plugins</groupId><artifactId>maven-surefire-plugin</artifactId><version>2.22.2</version><configuration><forkCount>0</forkCount><failIfNoTests>false</failIfNoTests></configuration></plugin></plugins></pluginManagement></build>
</project>

controller

package com.et.qwen.controller;import org.springframework.ai.chat.ChatClient;
import org.springframework.ai.chat.prompt.Prompt;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RequestParam;
import org.springframework.web.bind.annotation.RestController;import java.util.HashMap;
import java.util.Map;@RestController
public class HelloWorldController {@RequestMapping("/hello")public Map<String, Object> showHelloWorld(){Map<String, Object> map = new HashMap<>();map.put("msg", "HelloWorld");return map;}@AutowiredChatClient chatClient;@GetMapping("/ai/chat")public String chat(@RequestParam(value = "message", defaultValue = "Tell me a joke") String message) {Prompt prompt = new Prompt(message);return chatClient.call(prompt).getResult().getOutput().getContent();}}

application.yaml

server:port: 8088spring:ai:openai:base-url: https://api.openai.com/api-key: sk-xxxembedding:options:model: text-davinci-003chat:#指定某一个API配置(覆盖全局配置)api-key: sk-xxxbase-url: http://localhost:11434options:model: qwen:0.5b # 模型配置

以上只是一些关键代码,所有代码请参见下面代码仓库

代码仓库

  • https://github.com/Harries/springboot-demo(qwen)

6.测试

  • 启动Spring boot应用程序
  • 访问http://127.0.0.1:8088/ai/chat,你将看到qwen:0.5返回的信息
  • ollama服务端查看日志
2024-07-15 15:06:28 [GIN] 2024/07/15 - 07:06:28 | 200 | 4.810762037s | 172.20.0.1 | POST "/api/chat"
2024-07-15 15:06:29 [GIN] 2024/07/15 - 07:06:29 | 200 | 1.081850365s | 172.20.0.1 | POST "/v1/chat/completions"
2024-07-15 15:06:46 [GIN] 2024/07/15 - 07:06:46 | 200 | 46.802µs | 172.20.0.1 | GET "/api/version"

7.引用

  • Introducing Qwen1.5 | Qwen
  • https://ollama.com/blog/openai-compatibility
  • https://github.com/open-webui/open-webui
  • https://ollama.com/blog

相关文章:

Spring Boot集成qwen:0.5b实现对话功能

1.什么是qwen:0.5b&#xff1f; 模型介绍&#xff1a; Qwen1.5是阿里云推出的一系列大型语言模型。 Qwen是阿里云推出的一系列基于Transformer的大型语言模型&#xff0c;在大量数据&#xff08;包括网页文本、书籍、代码等&#xff09;进行了预训练。 硬件要求&#xff1a;…...

GreenDao实现原理

GreenDao 是一款针对 Android 平台优化的轻量级对象关系映射 (ORM) 框架&#xff0c;它将 Java 对象映射到 SQLite 数据库&#xff0c;以简化数据持久化操作。GreenDao 的主要优点包括高性能、低内存占用、易于使用以及对数据库加密的支持。 以下是基于源码的 GreenDao 实现原…...

Perl语言之数组

Perl数组可以存储多个标量&#xff0c;并且标量数据类型可以不同。   数组变量以开头。访问与定义格式如下&#xff1a; #! /usr/bin/perl arr("asdfasd",2,23.56,a); print "输出所有:arr\n"; print "arr[0]$arr[0]\n"; #输出指定下标 print…...

写材料word和PPT

一、WORD 1、写内容 2、参考GPT改&#xff1a;内容、逻辑结构、语句 3、查标题及其标号 4、修改格式&#xff1a;仿宋 、正文统一为小三&#xff0c;标题三号&#xff0c;1.5倍行距&#xff0c;加页码。 采用VBA代码自动修改&#xff0c;不知为何标题无法修改字体 Sub 插入页…...

Centos---命令详解 vi 系统服务 网络

目录 一、CentOS vi命令详解 二、CentOS系统服务命令 三、CentOS权限管理命令&#xff1a; 四、CentOS网络管理命令介绍&#xff1a; 一、CentOS vi命令详解 Vi是一款强大的文本编辑器&#xff0c;在CentOS中广泛使用。以下是Vi编辑器的一些常用命令&#xff1a; 1. 打开…...

【.NET全栈】ASP.NET开发web应用——ASP.NET中的样式、主题和母版页

文章目录 前言一、在ASP.NET中应用CSS样式1、创建CSS样式&#xff08;1&#xff09;内联样式&#xff08;2&#xff09;内部样式表&#xff08;3&#xff09;外部样式表 2、应用CSS样式&#xff08;1&#xff09;菜鸟教程-简单例子&#xff08;2&#xff09;菜鸟教程-用户界面&…...

[ruby on rails]部署时候产生ActiveRecord::PreparedStatementCacheExpired错误的原因及解决方法

一、问题&#xff1a; 有时在 Postgres 上部署 Rails 应用程序时&#xff0c;可能会看到 ActiveRecord::PreparedStatementCacheExpired 错误。仅当在部署中运行迁移时才会发生这种情况。发生这种情况是因为 Rails 利用 Postgres 的缓存准备语句(PreparedStatementCache)功能来…...

函数传值面试题

let a {name: aa };function fun1(a) {a []; // 这里创建了一个新的局部变量a&#xff0c;它是一个空数组// a.name "芜湖" }fun1(a); // 调用fun1&#xff0c;传入a的引用副本 console.log(a); // 输出&#xff1a;{ name: aa }在 JavaScript 中&#xff0c;当你…...

redis笔记2

redis是用c语言写的,放不频繁更新的数据&#xff08;用户数据。课程数据&#xff09; Redis 中&#xff0c;"穿透"通常指的是缓存穿透&#xff08;Cache Penetration&#xff09;问题&#xff0c;这是指一种恶意或非法请求直接绕过缓存层&#xff0c;直接访问数据库或…...

Kafka(四) Consumer消费者

一&#xff0c;基础知识 1&#xff0c;消费者与消费组 每个消费者都有对应的消费组&#xff0c;不同消费组之间互不影响。 Partition的消息只能被一个消费组中的一个消费者所消费&#xff0c; 但Partition也可能被再平衡分配给新的消费者。 一个Topic的不同Partition会根据分配…...

前端路由手写Hash和History两种模式

文章目录 1. Hash模式&#xff1a;简洁而广泛适用2. History模式&#xff1a;更自然的用户体验3. 结论 在现代Web开发中&#xff0c;单页面应用&#xff08;Single Page Application&#xff0c;简称SPA&#xff09;因其流畅的用户体验和高效的页面交互能力而备受青睐。前端路由…...

Redis的单线程讲解与指令学习

目录 一.Redis的命令 二.数据类型 三.Redis的key的过期策略如何实现&#xff1f; 四.Redis为什么是单线程的 五.String有关的命令 Redis的学习专栏&#xff1a;http://t.csdnimg.cn/a8cvV 一.Redis的命令 两个基本命令 在Redis当中&#xff0c;有两个基本命令&#xff1…...

为什么MySQL会选择B+树作为索引

为什么MySQL会选择B树作为索引 在数据库管理系统中&#xff0c;索引是提升查询效率的关键技术之一。MySQL作为广泛使用的关系型数据库管理系统&#xff0c;其核心存储引擎InnoDB选择B树作为其索引结构&#xff0c;这一选择背后蕴含了深刻的性能和存储效率考量。本文将简要介绍…...

k8s secret-从环境变量里去读和从yaml文件里读取secret有什么区别?

从环境变量和YAML文件中读取Kubernetes Secret的区别主要体现在使用方式、动态更新能力以及管理便捷性上。以下是详细的区别说明&#xff1a; 1. **使用方式**&#xff1a; - **环境变量方式**&#xff1a;Kubernetes允许将Secret作为环境变量注入到Pod的容器中。这种方式的好处…...

Springboot+Aop用注解实现阿里云短信验证码校验,校验通过自动删除验证码缓存

1.新建操作类型枚举&#xff08;这里的IEnum是我自定义的http请求拦截接口&#xff0c;不需要的话可以不用实现&#xff09; Getter AllArgsConstructor public enum OperationType implements IEnum<Integer> {/*** 注册*/SIGN_UP(0),/*** 密码登录*/LOGIN_BY_PWD(1),/…...

无线物联网新时代,RFID拣货标签跟随潮流

拣选技术的演变历程&#xff0c;本质上是从人力操作向自动化、智能化转型的持续进程。近期&#xff0c;“货寻人”技术成为众多企业热烈追捧的对象&#xff0c;它可以根据企业的特定需求&#xff0c;从众多拣选方案中选出最优解。那么&#xff0c;在采用“货到人”拣选技术时&a…...

Java8 根据List实体中一个字段去重取最大值,并且根据该字段进行排序

1、前言 某个功能要求需要对一个list对象里数据按照股票分组&#xff0c;并且取分组涨跌幅最大的&#xff0c;返回一个新的list对象&#xff0c;并且按照涨跌幅字段进行排序&#xff0c;这么一连串的要求&#xff0c;如果按照传统的写法&#xff0c;我们需要写一大坨的代码&am…...

微服务经纬:Eureka驱动的分布式服务网格配置全解

微服务经纬&#xff1a;Eureka驱动的分布式服务网格配置全解 在微服务架构的宏伟蓝图中&#xff0c;服务网格&#xff08;Service Mesh&#xff09;作为微服务间通信的独立层&#xff0c;承担着流量管理、服务发现、故障恢复等关键任务。Eureka&#xff0c;Netflix开源的服务发…...

关于前端数据库可视化库的选择,vue3+antd+g2plot录课计划

之前&#xff1a;antdv 现在&#xff1a;g2plot https://g2plot.antv.antgroup.com/manual/introduction 录课内容&#xff1a;快速入门 图表示例&#xff1a; 选择使用比较广泛的示例类型&#xff0c;录课顺序如下&#xff1a; 1、折线图2、面积图3、柱形图4、条形图5、饼…...

linux进行redis的安装并使用RDB进行数据迁移

现在有两台电脑&#xff0c;分别是A&#xff0c;B&#xff0c;现在我要把A电脑上的redis的数据迁移到B电脑上&#xff0c;B电脑上是没有安装redis的 1.找到A电脑的redis的版本 1.先启动A电脑的redis&#xff0c;一般来说&#xff0c;都是直接在linux的控制台输入&#xff1a;re…...

智慧医疗能源事业线深度画像分析(上)

引言 医疗行业作为现代社会的关键基础设施,其能源消耗与环境影响正日益受到关注。随着全球"双碳"目标的推进和可持续发展理念的深入,智慧医疗能源事业线应运而生,致力于通过创新技术与管理方案,重构医疗领域的能源使用模式。这一事业线融合了能源管理、可持续发…...

Prompt Tuning、P-Tuning、Prefix Tuning的区别

一、Prompt Tuning、P-Tuning、Prefix Tuning的区别 1. Prompt Tuning(提示调优) 核心思想:固定预训练模型参数,仅学习额外的连续提示向量(通常是嵌入层的一部分)。实现方式:在输入文本前添加可训练的连续向量(软提示),模型只更新这些提示参数。优势:参数量少(仅提…...

全球首个30米分辨率湿地数据集(2000—2022)

数据简介 今天我们分享的数据是全球30米分辨率湿地数据集&#xff0c;包含8种湿地亚类&#xff0c;该数据以0.5X0.5的瓦片存储&#xff0c;我们整理了所有属于中国的瓦片名称与其对应省份&#xff0c;方便大家研究使用。 该数据集作为全球首个30米分辨率、覆盖2000–2022年时间…...

对WWDC 2025 Keynote 内容的预测

借助我们以往对苹果公司发展路径的深入研究经验&#xff0c;以及大语言模型的分析能力&#xff0c;我们系统梳理了多年来苹果 WWDC 主题演讲的规律。在 WWDC 2025 即将揭幕之际&#xff0c;我们让 ChatGPT 对今年的 Keynote 内容进行了一个初步预测&#xff0c;聊作存档。等到明…...

TRS收益互换:跨境资本流动的金融创新工具与系统化解决方案

一、TRS收益互换的本质与业务逻辑 &#xff08;一&#xff09;概念解析 TRS&#xff08;Total Return Swap&#xff09;收益互换是一种金融衍生工具&#xff0c;指交易双方约定在未来一定期限内&#xff0c;基于特定资产或指数的表现进行现金流交换的协议。其核心特征包括&am…...

土地利用/土地覆盖遥感解译与基于CLUE模型未来变化情景预测;从基础到高级,涵盖ArcGIS数据处理、ENVI遥感解译与CLUE模型情景模拟等

&#x1f50d; 土地利用/土地覆盖数据是生态、环境和气象等诸多领域模型的关键输入参数。通过遥感影像解译技术&#xff0c;可以精准获取历史或当前任何一个区域的土地利用/土地覆盖情况。这些数据不仅能够用于评估区域生态环境的变化趋势&#xff0c;还能有效评价重大生态工程…...

多模态大语言模型arxiv论文略读(108)

CROME: Cross-Modal Adapters for Efficient Multimodal LLM ➡️ 论文标题&#xff1a;CROME: Cross-Modal Adapters for Efficient Multimodal LLM ➡️ 论文作者&#xff1a;Sayna Ebrahimi, Sercan O. Arik, Tejas Nama, Tomas Pfister ➡️ 研究机构: Google Cloud AI Re…...

【论文阅读28】-CNN-BiLSTM-Attention-(2024)

本文把滑坡位移序列拆开、筛优质因子&#xff0c;再用 CNN-BiLSTM-Attention 来动态预测每个子序列&#xff0c;最后重构出总位移&#xff0c;预测效果超越传统模型。 文章目录 1 引言2 方法2.1 位移时间序列加性模型2.2 变分模态分解 (VMD) 具体步骤2.3.1 样本熵&#xff08;S…...

学校时钟系统,标准考场时钟系统,AI亮相2025高考,赛思时钟系统为教育公平筑起“精准防线”

2025年#高考 将在近日拉开帷幕&#xff0c;#AI 监考一度冲上热搜。当AI深度融入高考&#xff0c;#时间同步 不再是辅助功能&#xff0c;而是决定AI监考系统成败的“生命线”。 AI亮相2025高考&#xff0c;40种异常行为0.5秒精准识别 2025年高考即将拉开帷幕&#xff0c;江西、…...

Go语言多线程问题

打印零与奇偶数&#xff08;leetcode 1116&#xff09; 方法1&#xff1a;使用互斥锁和条件变量 package mainimport ("fmt""sync" )type ZeroEvenOdd struct {n intzeroMutex sync.MutexevenMutex sync.MutexoddMutex sync.Mutexcurrent int…...