R语言进行集成学习算法:随机森林
# 10.4 集成学习及随机森林
# 导入car数据集
car <- read.table("data/car.data",sep = ",")
# 对变量重命名
colnames(car) <- c("buy","main","doors","capacity","lug_boot","safety","accept")
# 随机选取75%的数据作为训练集建立模型,25%的数据作为测试集用来验证模型
library(caret)
library(ggplot2)
library(lattice)
# 构建训练集的下标集
ind <- createDataPartition(car$accept,times=1,p=0.75,list=FALSE)
# 构建测试集数据好训练集数据
carTR <- car[ind,]
carTE <- car[-ind,]
carTR<- within(carTR,accept <- factor(accept,levels=c("unacc","acc","good","vgood")))
carTE<- within(carTE,accept <- factor(accept,levels=c("unacc","acc","good","vgood")))# 使用adabag包中的bagging函数实现bagging算法
#install.packages("adabag")
library(adabag)
bagging.model <- bagging(accept~.,data=carTR)# 使用adabag包中的boosting函数实现boosting算法
boosting.model <- boosting(accept~.,data=carTR)# 使用randomForest包中的randomForest函数实现随机森林算法
#install.packages("randomForest")
library(randomForest)
randomForest.model <- randomForest(accept~.,data=carTR,ntree=500,mtry=3)# 预测结果,并构建混淆矩阵,查看准确率
# 构建result,存放预测结果
result <- data.frame(arithmetic=c("bagging","boosting","随机森林"),errTR=rep(0,3),errTE=rep(0,3))
for(i in 1:3){# 预测结果carTR_predict <- predict(switch(i,bagging.model,boosting.model,randomForest.model),newdata=carTR) # 训练集数据carTE_predict <- predict(switch(i,bagging.model,boosting.model,randomForest.model),newdata=carTE) # 测试集数据# 构建混淆矩阵tableTR <- table(actual=carTR$accept,predict=switch(i,carTR_predict$class,carTR_predict$class,carTR_predict))tableTE <- table(actual=carTE$accept,predict=switch(i,carTE_predict$class,carTE_predict$class,carTE_predict))# 计算误差率result[i,2] <- paste0(round((sum(tableTR)-sum(diag(tableTR)))*100/sum(tableTR),2),"%")result[i,3] <- paste0(round((sum(tableTE)-sum(diag(tableTE)))*100/sum(tableTE),2),"%")
}
# 查看结果
result

相关文章:
R语言进行集成学习算法:随机森林
# 10.4 集成学习及随机森林 # 导入car数据集 car <- read.table("data/car.data",sep ",") # 对变量重命名 colnames(car) <- c("buy","main","doors","capacity","lug_boot","safety"…...
虚拟机的状态更新
文章目录 虚拟机的更新一、检查虚拟机的配置1.已连接状态2. 保证镜像源挂载 二、进行更新三、其余事项 虚拟机的更新 虚拟机的更新是确保系统软件包和库的更新,以获得最新的修复和改进;如果长期没有打开单机或者集群,可以考虑先进行一次更新…...
基于hive数据库的泰坦尼克号幸存者数据分析
进入 ./beeline -u jdbc:hive2://node2:10000 -n root -p 查询 SHOW TABLES; 删除 DROP TABLE IF EXISTS tidanic; 上传数据 hdfs dfs -put train.csv /user/hive/warehouse/mytrain.db/tidanic 《泰坦尼克号幸存者数据分析》 1、原始数据介绍 泰坦尼克号是当时世界上…...
excel根据数据批量创建并重命名工作表
需求 根据一列数据,批量创建并重命名工作表 做法 1. 右键该sheet,选择查看代码 2. 输入VBA代码 正向创建 Sub create_sheets_by_col()Dim num% 定义为integer*num Application.WorksheetFunction.CountA(Sheet1.Range("A:A")) num是非空…...
智能合约和分布式应用管理系统:技术革新与未来展望
引言 随着区块链技术的不断发展,智能合约和分布式应用(DApps)逐渐成为数字经济中的重要组成部分。智能合约是一种自执行的协议,能够在预设条件满足时自动执行代码,而无需人工干预或中介机构。这种自动化和信任机制极大…...
Spring MVC 中的拦截器的使用“拦截器基本配置” 和 “拦截器高级配置”
1. Spring MVC 中的拦截器的使用“拦截器基本配置” 和 “拦截器高级配置” 文章目录 1. Spring MVC 中的拦截器的使用“拦截器基本配置” 和 “拦截器高级配置”2. 拦截器3. Spring MVC 中的拦截器的创建和基本配置3.1 定义拦截3.2 拦截器基本配置3.3 拦截器的高级配置 4. Spr…...
MyBatis框架学习笔记(四):动态SQL语句、映射关系和缓存
1 动态 SQL 语句-更复杂的查询业务需求 1.1 动态 SQL-官方文档 (1)文档地址: mybatis – MyBatis 3 | 动态 SQL (2)为什么需要动态 SQL 动态 SQL 是 MyBatis 的强大特性之一 使用 JDBC 或其它类似的框架,根据不同条…...
【C++PythonJava】字符处理详细解读_字符_ASCLL码_字母数字转换_算法竞赛_开发语言
文章目录 Beginning1)ASCLL 码2)大小比较2)判断数字字符3)字符、数字间的相互转换End Beginning 在 C 中,字符和整数有着密不可分的关系。原因就是在计算机中,字符是以一种较 ASCLL 码的整数存储的。自然&…...
人像视频淡入淡出效果的灵敏检验方法
在视频中经常会有淡入淡出的效果,这可能导致人脸检测在实际人已经离开画面之后仍然触发,特别是在使用基于像素强度变化的检测算法时。为了更精确地裁剪视频,你可以尝试以下几种方法: 使用更复杂的人脸检测模型: 有些…...
Unity UGUI Image Maskable
在Unity的UGUI系统中,Maskable属性用于控制UI元素是否受到父级遮罩组件的影响。以下是关于这个属性的详细说明和如何使用: Maskable属性 Maskable属性: 当你在GameObject上添加一个Image组件(比如UI面板或按钮)时&…...
SpringCloud | 单体商城项目拆分(微服务)
为什么要进行微服务拆分? 在平常的商城项目中,我们一般的项目结构模块都是将各种业务放在同一个项目文件夹,比如像: 用户,购物车,商品,订单,支付等业务都是放在一起,这样…...
uniapp 如何实现路由拦截,路由守卫
uniapp框架的全局文件:page.json全局文件,官网链接 背景: 通过封装 UniApp 的路由方法,并在封装方法中添加自定义逻辑,可以实现类似 Vue Router 的路由守卫功能。 在 UniApp 框架中,不像 Vue Router 直接支…...
人工智能算法工程师(中级)课程13-神经网络的优化与设计之梯度问题及优化与代码详解
大家好,我是微学AI,今天给大家介绍一下人工智能算法工程师(中级)课程13-神经网络的优化与设计之梯度问题及优化与代码详解。 文章目录 一、引言二、梯度问题1. 梯度爆炸梯度爆炸的概念梯度爆炸的原因梯度爆炸的解决方案 2. 梯度消失梯度消失的概念梯度…...
Qt/QML学习-ComboBox
QML学习 ComboBox例程视频讲解代码 main.qml import QtQuick 2.15 import QtQuick.Window 2.15 import QtQuick.Controls 2.15Window {width: 640height: 480visible: truetitle: qsTr("ComboBox")ComboBox {id: comboBox// 列表项数据模型model: ListModel {List…...
微服务实战系列之玩转Docker(一)
前言 话说计算机的“小型化”发展,历经了大型机、中型机直至微型机,贯穿了整个20世纪的下半叶。同样,伴随着计算机的各个发展阶段,如何做到“资源共享、资源节约”,也一直是一代又一代计算机人的不懈追求和历史使命。今…...
Java中常见的语法糖
文章目录 概览泛型增强for循环自动装箱与拆箱字符串拼接枚举类型可变参数内部类try-with-resourcesLambda表达式 概览 语法糖是指编程语言中的一种语法结构,它们并不提供新的功能,而是为了让代码更易读、更易写而设计的。语法糖使得某些常见的编程模式或…...
数据库使用SSL加密连接
简介 数据库开通SSL加密连接是确保数据传输过程中安全性的关键措施,它通过加密数据、验证服务器身份、保护敏感信息、维护数据完整性和可靠性,同时满足行业标准和法规要求,进而提升用户体验和信任度,为企业的数据安全和业务连续性…...
华为OD算法题汇总
60、计算网络信号 题目 网络信号经过传递会逐层衰减,且遇到阻隔物无法直接穿透,在此情况下需要计算某个位置的网络信号值。注意:网络信号可以绕过阻隔物 array[m][n],二维数组代表网格地图 array[i][j]0,代表i行j列是空旷位置 a…...
服务器的rabbitmq的guest账号登不进去
要配置 RabbitMQ 允许 guest 账号从非 localhost 地址登录,需要执行以下步骤: 编辑 RabbitMQ 配置文件: 打开 RabbitMQ 的配置文件,通常位于 /etc/rabbitmq/rabbitmq.conf 或者 /etc/rabbitmq/rabbitmq-env.conf。如果这些文件不存…...
决策树(ID3,C4.5,C5.0,CART算法)以及条件推理决策树R语言实现
### 10.2.1 ID3算法基本原理 ### mtcars2 <- within(mtcars[,c(cyl,vs,am,gear)], {am <- factor(am, labels c("automatic", "manual"))vs <- factor(vs, labels c("V", "S"))cyl <- ordered(cyl)gear <- ordered…...
vue3 定时器-定义全局方法 vue+ts
1.创建ts文件 路径:src/utils/timer.ts 完整代码: import { onUnmounted } from vuetype TimerCallback (...args: any[]) > voidexport function useGlobalTimer() {const timers: Map<number, NodeJS.Timeout> new Map()// 创建定时器con…...
AirSim/Cosys-AirSim 游戏开发(四)外部固定位置监控相机
这个博客介绍了如何通过 settings.json 文件添加一个无人机外的 固定位置监控相机,因为在使用过程中发现 Airsim 对外部监控相机的描述模糊,而 Cosys-Airsim 在官方文档中没有提供外部监控相机设置,最后在源码示例中找到了,所以感…...
uniapp 开发ios, xcode 提交app store connect 和 testflight内测
uniapp 中配置 配置manifest 文档:manifest.json 应用配置 | uni-app官网 hbuilderx中本地打包 下载IOS最新SDK 开发环境 | uni小程序SDK hbulderx 版本号:4.66 对应的sdk版本 4.66 两者必须一致 本地打包的资源导入到SDK 导入资源 | uni小程序SDK …...
day36-多路IO复用
一、基本概念 (服务器多客户端模型) 定义:单线程或单进程同时监测若干个文件描述符是否可以执行IO操作的能力 作用:应用程序通常需要处理来自多条事件流中的事件,比如我现在用的电脑,需要同时处理键盘鼠标…...
苹果AI眼镜:从“工具”到“社交姿态”的范式革命——重新定义AI交互入口的未来机会
在2025年的AI硬件浪潮中,苹果AI眼镜(Apple Glasses)正在引发一场关于“人机交互形态”的深度思考。它并非简单地替代AirPods或Apple Watch,而是开辟了一个全新的、日常可接受的AI入口。其核心价值不在于功能的堆叠,而在于如何通过形态设计打破社交壁垒,成为用户“全天佩戴…...
Qt 事件处理中 return 的深入解析
Qt 事件处理中 return 的深入解析 在 Qt 事件处理中,return 语句的使用是另一个关键概念,它与 event->accept()/event->ignore() 密切相关但作用不同。让我们详细分析一下它们之间的关系和工作原理。 核心区别:不同层级的事件处理 方…...
【Elasticsearch】Elasticsearch 在大数据生态圈的地位 实践经验
Elasticsearch 在大数据生态圈的地位 & 实践经验 1.Elasticsearch 的优势1.1 Elasticsearch 解决的核心问题1.1.1 传统方案的短板1.1.2 Elasticsearch 的解决方案 1.2 与大数据组件的对比优势1.3 关键优势技术支撑1.4 Elasticsearch 的竞品1.4.1 全文搜索领域1.4.2 日志分析…...
xmind转换为markdown
文章目录 解锁思维导图新姿势:将XMind转为结构化Markdown 一、认识Xmind结构二、核心转换流程详解1.解压XMind文件(ZIP处理)2.解析JSON数据结构3:递归转换树形结构4:Markdown层级生成逻辑 三、完整代码 解锁思维导图新…...
论文阅读:Matting by Generation
今天介绍一篇关于 matting 抠图的文章,抠图也算是计算机视觉里面非常经典的一个任务了。从早期的经典算法到如今的深度学习算法,已经有很多的工作和这个任务相关。这两年 diffusion 模型很火,大家又开始用 diffusion 模型做各种 CV 任务了&am…...
基于单片机的宠物屋智能系统设计与实现(论文+源码)
本设计基于单片机的宠物屋智能系统核心是实现对宠物生活环境及状态的智能管理。系统以单片机为中枢,连接红外测温传感器,可实时精准捕捉宠物体温变化,以便及时发现健康异常;水位检测传感器时刻监测饮用水余量,防止宠物…...
