Towards Unsupervised Text Classification Leveraging Experts and Word Embeddings
Towards Unsupervised Text Classification Leveraging Experts and Word Embeddings
Abstract
该论文提出了一种无监督的方法,使用每个文档中相关单词之间的文本相似度以及每个类别的关键字字典将文档分为几类。所提出的方法通过人类专业知识和语言模型丰富了类别标签,为低成本文本分类提供了一种实用的替代方案。
introduction
本文讨论了文档分类,这是机器学习中的一项标准任务,包括电子邮件过滤和新闻文章聚类等应用程序。传统的文本分类过程依赖于监督或半监督方法,这些方法需要标注的数据才能达到足够的准确性。但是,拟议的方法旨在使用每份文档中相关单词之间的文本相似性以及通过人类专业知识和语言模型丰富每个类别的关键字字典进行无监督分类。当需要低成本文本分类时,这种方法提供了另一种解决方案,其在运营风险事件分类中的应用示例就说明了这一点,这些应用来自银行部门管理定期与监管机构共享的描述各种类型的风险(包括内部/外部欺诈、网络安全问题等)的历史数据集。
contributions
本文的主要贡献是提出了一种无监督的方法,使用文本相似度和每个类别的关键字字典将文档分为几类。该方法通过人类专业知识和语言模型丰富了类别标签,为低成本文本分类提供了一种实用的替代方案。此外,对5个标准语料库的实验表明,与仅依赖人类专业知识相比,所提出的方法提高了F1分数,也可以与简单的监督方法相提并论。最后,运营风险事件分类中的一个应用示例说明了这种方法在其最初的灵感领域之外如何在实践中使用。
Literature survey
本文的文献调查侧重于为克服标准文本分类中对大量带注释数据的要求而提出的技术。大多数方法包括半监督方法,这些方法利用一小部分带标签的文档为其余文档导出标签,例如Nigam等人的期望最大化(EM)算法(2000)。重复此过程直到收敛,并且已成功生成无需完全手动注释的带标签示例。
Limitations
本文的局限性包括:
- 所提出的方法依赖于每个类别的关键字字典,该字典可能不够全面或准确,无法涵盖某些领域中文档的全部范围和复杂性。
- 尽管与仅依靠人类专业知识相比,实验显示出令人鼓舞的结果,但其性能仍低于使用带有大型标签数据集的监督方法所达到的效果。因此,当需要高精度分类时,它可能不适合。
- 尽管超出其原始灵感领域的应用示例说明了这种方法如何在实践中更普遍地在不同行业中发挥作用,但用例在被广泛采用之前需要进一步验证。
Practical implications
本文的实际含义是,它提出了一种无监督的方法,使用文本相似度对文档进行分类,并为每个类别提供一个通过人类专业知识和语言模型丰富而丰富的关键字词典。当需要低成本文本分类时,这种方法提供了一种具有成本效益的替代方案,如其最初灵感来自的银行部门管理领域之外的运营风险事件分类中的应用示例所示。所提出的方法可用于需要以合理的精度进行文档分类的不同行业,无需大型带标签的数据集或大量的手动注释工作。
Methods
本文中使用的方法包括:
- 基于每个文档中相关单词之间的文本相似度以及每个类别的关键字字典的无监督文本分类。
- 通过人类专业知识和语言模型(包括通用和特定领域)丰富标签词典。
- 在文档方面执行标准清理步骤,以在处理之前删除不相关的信息。
- 在类别标签方面实施了一系列丰富步骤,以便迭代地扩展标签词典。
dataset
该论文使用了五个标准文本分类语料库进行评估。论文简要描述了这些数据集,包括20NewsGroup2、R8、R52、Ohsumed和Reuters-21578。作者汇总了每个数据集的训练集和测试集,将其用作整个语料库,因为他们采用了无监督方法,不需要在训练测试拆分之间进行标记数据分离。
Results
论文的结果表明,拟议的使用文本相似度对文档进行分类的无监督方法以及通过人类专业知识和语言模型丰富的每个类别的关键字字典的表现优于简单的无监督基线,从而使所有语料库的F1分数翻了一番。对五个标准文本分类数据集的实验表明,除了Yahoo-Answers数据集的性能相似的Yahoo-Answers数据集外,仅使用特定领域的嵌入在大多数指标上的性能要优于单独使用通用嵌入的性能。仅如一些实验结果所示,与嵌入相比,组合丰富,可以适度提高性能。总体而言,当需要低成本文本分类时,该方法可以提供替代方案,无需大型带标签的数据集或大量的手动注释工作,同时与某些条件下的监督方法相比,可以实现合理的准确性。
Conclusions
该论文的结论是,与某些条件下的监督方法相比,使用文本相似度对文档进行分类的无监督方法以及通过人类专业知识和语言模型丰富的每个类别的关键字字典可以提供合理的准确性。当需要低成本文本分类时,所提出的方法提供了一种经济实惠的替代方案,无需大型带标签的数据集或大量的手动注释工作,如其在最初启发的银行部门管理领域之外的运营风险事件分类中的应用示例所示。进一步的研究可以探讨诸如ELMO(Peters等人,2018年)和BERT(Devlin等人,2018年)之类的单词嵌入的最新进展能否为这种方法带来更多好处。
Future works
该论文提出了几项可以探索的未来作品,包括:
-研究如何使用诸如ELMO和BERT之类的单词嵌入方面的最新进展,以进一步提高性能。
-探索丰富人类专业知识和语言模型以外的类别标签的不同方法,例如使用外部知识库或本体论。
-针对复杂程度和领域特异性不同的其他文本分类任务评估所提出的方法。
-将这种无监督方法与更复杂的监督方法(例如标记数据可用时的深度学习架构)进行比较。
这些潜在的研究途径可以帮助扩展本文提出的发现,同时还可以为如何在不牺牲准确性的情况下最好地进行低成本文本分类提供新的见解。
相关文章:
Towards Unsupervised Text Classification Leveraging Experts and Word Embeddings
Towards Unsupervised Text Classification Leveraging Experts and Word Embeddings Abstract 该论文提出了一种无监督的方法,使用每个文档中相关单词之间的文本相似度以及每个类别的关键字字典将文档分为几类。所提出的方法通过人类专业知识和语言模型丰富了类别…...

linux进程管理
进程管理 进程是启动的可执行程序的一个指令 1、进程简介 (1)进程的组成部分 已分配内存的地址空间安全属性,包括所有权凭据和特权程序代码的一个或多个执行线程进程状态 (2)程序和进程的区别 程序是一个静态的二进制…...

【深度强化学习】(6) PPO 模型解析,附Pytorch完整代码
大家好,今天和各位分享一下深度强化学习中的近端策略优化算法(proximal policy optimization,PPO),并借助 OpenAI 的 gym 环境完成一个小案例,完整代码可以从我的 GitHub 中获得: https://gith…...

【数据结构】第二站:顺序表
目录 一、线性表 二、顺序表 1.顺序表的概念以及结构 2.顺序表的接口实现 3.顺序表完整代码 三、顺序表的经典题目 1.移除元素 2.删除有序数组中的重复项 3.合并两个有序数组 一、线性表 在了解顺序表前,我们得先了解线性表的概念 线性表(linear…...

嵌入式安防监控项目——实现真实数据的上传
目录 一、相关驱动开发 二、A9主框架 三、脚本及数据上传实验 https://www.yuque.com/uh1h8r/dqrma0/tx0fq08mw1ar1sor?singleDoc# 《常见问题》 上个笔记的相关问题 一、相关驱动开发 /* mpu6050六轴传感器 */ i2c138B0000 { /* #address-cells <1>…...

SAP 生成UUID
UUID含义是通用唯一识别码 (Universally Unique Identifier),这 是一个软件建构的标准,也是被开源软件基金会 (Open Software Foundation, OSF) 的组织应用在分布式计算环境 (Distributed Computing Environment, DCE) 领域的一部分。 UUID-Universally…...
DevOPs介绍,这一篇就足够了
一、什么是DevOps? DevOps是一种将软件开发和IT运维进行整合的文化和运动。它的目标是通过加强软件开发、测试和运维之间的协作和沟通,使整个软件开发和交付过程更加高效、快速、安全和可靠。DevOps涵盖了从计划和设计到开发、测试、交付和部署的全生命…...

libcurl库简介
一、libcurl简介libcurl是一个跨平台的网络协议库,支持http, https, ftp, gopher, telnet, dict, file, 和ldap 协议。libcurl同样支持HTTPS证书授权,HTTP POST, HTTP PUT, FTP 上传, HTTP基本表单上传,代理,cookies,和用户认证。…...

Spark SQL支持DataFrame操作的数据源
DataFrame提供统一接口加载和保存数据源中的数据,包括:结构化数据、Parquet文件、JSON文件、Hive表,以及通过JDBC连接外部数据源。一个DataFrame可以作为普通的RDD操作,也可以通过(registerTempTable)注册成…...

Java【归并排序】算法, 大白话式图文解析(附代码)
文章目录前言一、排序相关概念1, 什么是排序2, 什么是排序的稳定性3, 七大排序分类二、归并排序1, 图文解析2, 代码实现三、性能分析四、七大排序算法总体分析前言 各位读者好, 我是小陈, 这是我的个人主页 小陈还在持续努力学习编程, 努力通过博客输出所学知识 如果本篇对你有…...

【springboot】数据库访问
1、SQL 1、数据源的自动配置-HikariDataSource 1、导入JDBC场景 <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-data-jdbc</artifactId></dependency>数据库驱动? 为什么导入JD…...
普通和hive兼容模式下sql的差异
–odps sql –– –author:宋文理 –create time:2023-03-08 15:23:52 –– – 差异分为三块 – 1.运算符的差异 – 2.类型转换的差异 – 3.内建函数的差异 – 以下是运算符的差异: – BITAND(&) – 当输入参数是BIGINT类型的时候&…...

github开源自己代码
接下来,我们需要先下载Git,的网址:https://git-scm.com/downloads,安装时如果没有特殊需求,一直下一步就可以了,安装完成之后,双击打开Git Bash 出现以下界面: 第一步:…...

数据库基础语法
sql(Structured Query Language 结构化查询语言) SQL语法 use DataTableName; 命令用于选择数据库。set names utf8; 命令用于设置使用的字符集。SELECT * FROM Websites; 读取数据表的信息。上面的表包含五条记录(每一条对应一个网站信息&…...

【Java】期末复习知识点总结(4)
适合Java期末的复习~ (Java期末复习知识点总结分为4篇,这里是最后一篇啦)第一篇~https://blog.csdn.net/qq_53869058/article/details/129417537?spm1001.2014.3001.5501第二篇~https://blog.csdn.net/qq_53869058/article/details/1294751…...

IDEA好用插件:MybatisX快速生成接口实体类mapper.xml映射文件
目录 1、在Idea中找到下载插件,Install,重启Idea 2、一个测试java文件,里面有com包 3、在Idea中添加数据库 --------以Oracle数据库为例 4、快速生成entity-service-mapper方法 5、查看生成的代码 6、自动生成(增删查改࿰…...

【JavaEE】初识线程
一、简述进程认识线程之前我们应该去学习一下“进程" 的概念,我们可以把一个运行起来的程序称之为进程,进程的调度,进程的管理是由我们的操作系统来管理的,创建一个进程,操作系统会为每一个进程创建一个 PCB&…...

智慧水务监控系统-智慧水务信息化平台建设
平台概述柳林智慧水务监控系统(智慧水务信息化平台)是以物联感知技术、大数据、智能控制、云计算、人工智能、数字孪生、AI算法、虚拟现实技术为核心,以监测仪表、通讯网络、数据库系统、数据中台、模型软件、前台展示、智慧运维等产品体系为…...

【Linux】进程优先级前后台理解
环境:centos7.6,腾讯云服务器Linux文章都放在了专栏:【Linux】欢迎支持订阅🌹相关文章推荐:【Linux】冯.诺依曼体系结构与操作系统【Linux】进程理解与学习(Ⅰ)浅谈Linux下的shell--BASH【Linux…...

时序预测 | MATLAB实现基于EMD-GRU时间序列预测(EMD分解结合GRU门控循环单元)
时序预测 | MATLAB实现基于EMD-GRU时间序列预测(EMD分解结合GRU门控循环单元) 目录 时序预测 | MATLAB实现基于EMD-GRU时间序列预测(EMD分解结合GRU门控循环单元)效果一览基本描述模型描述程序设计参考资料效果一览...
挑战杯推荐项目
“人工智能”创意赛 - 智能艺术创作助手:借助大模型技术,开发能根据用户输入的主题、风格等要求,生成绘画、音乐、文学作品等多种形式艺术创作灵感或初稿的应用,帮助艺术家和创意爱好者激发创意、提高创作效率。 - 个性化梦境…...
生成xcframework
打包 XCFramework 的方法 XCFramework 是苹果推出的一种多平台二进制分发格式,可以包含多个架构和平台的代码。打包 XCFramework 通常用于分发库或框架。 使用 Xcode 命令行工具打包 通过 xcodebuild 命令可以打包 XCFramework。确保项目已经配置好需要支持的平台…...

云启出海,智联未来|阿里云网络「企业出海」系列客户沙龙上海站圆满落地
借阿里云中企出海大会的东风,以**「云启出海,智联未来|打造安全可靠的出海云网络引擎」为主题的阿里云企业出海客户沙龙云网络&安全专场于5.28日下午在上海顺利举办,现场吸引了来自携程、小红书、米哈游、哔哩哔哩、波克城市、…...
postgresql|数据库|只读用户的创建和删除(备忘)
CREATE USER read_only WITH PASSWORD 密码 -- 连接到xxx数据库 \c xxx -- 授予对xxx数据库的只读权限 GRANT CONNECT ON DATABASE xxx TO read_only; GRANT USAGE ON SCHEMA public TO read_only; GRANT SELECT ON ALL TABLES IN SCHEMA public TO read_only; GRANT EXECUTE O…...
反射获取方法和属性
Java反射获取方法 在Java中,反射(Reflection)是一种强大的机制,允许程序在运行时访问和操作类的内部属性和方法。通过反射,可以动态地创建对象、调用方法、改变属性值,这在很多Java框架中如Spring和Hiberna…...

分布式增量爬虫实现方案
之前我们在讨论的是分布式爬虫如何实现增量爬取。增量爬虫的目标是只爬取新产生或发生变化的页面,避免重复抓取,以节省资源和时间。 在分布式环境下,增量爬虫的实现需要考虑多个爬虫节点之间的协调和去重。 另一种思路:将增量判…...
AGain DB和倍数增益的关系
我在设置一款索尼CMOS芯片时,Again增益0db变化为6DB,画面的变化只有2倍DN的增益,比如10变为20。 这与dB和线性增益的关系以及传感器处理流程有关。以下是具体原因分析: 1. dB与线性增益的换算关系 6dB对应的理论线性增益应为&…...
QT3D学习笔记——圆台、圆锥
类名作用Qt3DWindow3D渲染窗口容器QEntity场景中的实体(对象或容器)QCamera控制观察视角QPointLight点光源QConeMesh圆锥几何网格QTransform控制实体的位置/旋转/缩放QPhongMaterialPhong光照材质(定义颜色、反光等)QFirstPersonC…...
【JavaSE】多线程基础学习笔记
多线程基础 -线程相关概念 程序(Program) 是为完成特定任务、用某种语言编写的一组指令的集合简单的说:就是我们写的代码 进程 进程是指运行中的程序,比如我们使用QQ,就启动了一个进程,操作系统就会为该进程分配内存…...

解读《网络安全法》最新修订,把握网络安全新趋势
《网络安全法》自2017年施行以来,在维护网络空间安全方面发挥了重要作用。但随着网络环境的日益复杂,网络攻击、数据泄露等事件频发,现行法律已难以完全适应新的风险挑战。 2025年3月28日,国家网信办会同相关部门起草了《网络安全…...