【深度学习入门篇 ⑦】PyTorch池化层
【🍊易编橙:一个帮助编程小伙伴少走弯路的终身成长社群🍊】
大家好,我是小森( ﹡ˆoˆ﹡ ) ! 易编橙·终身成长社群创始团队嘉宾,橙似锦计划领衔成员、阿里云专家博主、腾讯云内容共创官、CSDN人工智能领域优质创作者 。
池化层 (Pooling) 降低维度,缩减模型大小,提高计算速度. 即: 主要对卷积层学习到的特征图进行下采样(SubSampling)处理 。
- 通过下采样,我们可以提取出特征图中最重要的特征,同时忽略掉一些不重要的细节。
- 上采样是指增加数据(图像)的尺寸;通常用于图像的分割、超分辨率重建或生成模型中,以便将特征图恢复到原始图像的尺寸或更大的尺寸。
池化层
池化包含最大池化和平均池化,有一维池化,二维池化,三维池化,在这里以二维池化为例
最大池化
最大池化就是求一个区域中的最大值,来代替该区域。
torch.nn.MaxPool2d(kernel_size, stride=None, padding=0, dilation=1, return_indices=False, ceil_mode=False)
假设输入的尺寸是(𝑁,𝐶,𝐻,𝑊),输出尺寸是(𝑁,𝐶,𝐻𝑜𝑢𝑡,𝑊𝑜𝑢𝑡),kernel_size
是(𝑘𝐻,𝑘𝑊),可以写成下面形式 :
其中,输入参数 kernel_size
,stride
,padding
,dilation
可以是
- 一个 int :代表长宽使用同样的参数
- 两个int组成的元组:第一个int用在H维度,第二个int用在W维度
import torch
import torch.nn as nn
#长宽一致的池化,核尺寸为3x3,池化步长为2
ml = nnMaxPool2d(3, stride=2)
#长宽不一致的池化
m2 = nn.MaxPool2d((3,2), stride=(2,1))
input = torch.randn(4,3,24,24)
output1 = m1( input)
output2 = m2( input)
print( "input.shape = " ,input.shape)
print( "output1.shape = " , output1.shape)
print( "output2.shape = " , output2.shape)
输出:
input.shape = torch.size([4,3,24,24])
output1.shape = torch. size([4,3,11,11])
output2.shape = torch.size([4,3,11,23])
平均池化
平均池化就是用一个区域中的平均数来代替本区域
torch.nn.AvgPool2d(kernel_size, stride=None, padding=0, ceil_mode=False, count_include_pad=True, divisor_override=None)
import torch
import torch.nn as nn
#长宽一致的池化,核尺寸为3x3,池化步长为2
ml = nn. AvgPool2d( 3, stride=2)
#长宽不一致的池化
m2 = nn. AvgPool2d(( 3,2), stride=(2,1) )
input = torch.randn(4,3,24,24)
output1 = m1( input)
output2 = m2( input)
print("input.shape = ",input. shape)
print("output1.shape = " , output1.shape)
print( "output2.shape = ", output2.shape)
- randn是生成形状为[batch_size, channels, height, width]
输出:
input.shape = torch.size([4,3,24,24])
output1.shape = torch.size([4,3,11,11])
output2.shape = torch.size([4,3,11,23])
BN层
BN,即Batch Normalization,是对每一个batch的数据进行归一化操作,可以使得网络训练更稳定,加速网络的收敛。
import torch
import torch.nn as nn
#批量归一化层(具有可学习参数)
m_learnable = nn. BatchNorm2d(100)
#批量归一化层(不具有可学习参数)
m_non_learnable = nn.BatchNorm2d(100,affine=False)
#随机生成输入数据
input = torch.randn(20,100,35,45)
#应用具有可学习参数的批量归一化层
output_learnable = m_learnable(input)
#应用不具有可学习参数的批量归一化层
output_non_learnable = m_non_learnable(input)
print( "input.shape = ", input.shape)
print( "output_learnable.shape = ", output_learnable.shape)
print( "output_non_learnable.shape = ", output_non_learnable.shape)
输出:
input.shape = torch.size([20,100,35,45])
output_learnable.shape = torch.size( [20,100,35,45])
output_non_learnable.shape = torch.size([20,100,35,45])
常见的层就是上面提到的这些,如果这些层结构被反复调用,我们可以将其封装成一个个不同的模块。
案例:复现LeNet
LeNet结构,使用PyTorch进行复现,卷积核大小5x5,最大池化层,核大小2x2
import torch
import torch.nn as nn
from torchsummary import summary
class LeNet( nn . Module):def _init_( self,num_classes=10):super(Leet, self)._init__()self.conv1 = nn.conv2d( in_channels=3,out_channels=6,kernel_size=5)self.pool1 = nn. MaxPool2d(kernel_size=2)self.conv2 = nn.Conv2d(in_channels=6,out_channels=16,kernel_size=5)self.pool2 = nn. MaxPool2d(kernel_size=2)self.conv3 = nn.conv2d(in_channels=16,out_channels=120, kernel_size=5)self.fc1 = nn.Linear(in_features=120,out_features=84)self.fc2 = nn.Linear(in_features=84,out_features=10)def forward(self, x):#通过卷积层、ReLU和池化层x = self.conv1(x)x = self.pool1(x)x = self.conv2(x)x = self.pool2(x)x = self.conv3(x)x = x.view( -1,120)x = self.fc1(x)x = self.fc2(x)return x
#创建网络实例
num_classes = 10
net = LeNet( num_classes)#创建一个输入
batch_size = 4
input_tensor = torch.randn(batch_size,3,32,32)
# 假设输入是32x32的RGB图像
#将输入Tensor传递给网络
output = net(input_tensor)
# #显示输出Tensor的形状
print(output.shape)
summary(net,(3,32,32))
Sequential: 顺序容器
Sequential属于顺序容器。模块将按照在构造函数中传递的顺序从上到下进行运算。
使用OrderedDict
,可以进一步对传进来的层进行重命名。
#使用sequential来创建小模块,当有输入进来,会从上到下依次经过所有模块
model = nn. Sequential(
nn.conv2d(1,20,5),nn.ReLu() ,
nn.conv2d(20,64,5),nn.ReLU()
)
#使用orderedDict,可以对传进来的模块进行命名,实现效果同上
from collections import orderedDict
model = nn. sequential ( orderedDict([( 'conv1 ', nn.Conv2d( 1,20,5)),( 'relu1 ', nn.ReLU( ) ),( 'conv2 ', nn.conv2d(20,64,5)),( 'relu2 ', nn.ReLU())
]))
除此之外,还可以用 ModuleList
和 ModuleDict
来存放子模块,但是用的不多,掌握了上面的内容就足够了。
相关文章:

【深度学习入门篇 ⑦】PyTorch池化层
【🍊易编橙:一个帮助编程小伙伴少走弯路的终身成长社群🍊】 大家好,我是小森( ﹡ˆoˆ﹡ ) ! 易编橙终身成长社群创始团队嘉宾,橙似锦计划领衔成员、阿里云专家博主、腾讯云内容共创官…...

【Pytorch】数据集的加载和处理(一)
Pytorch torchvision 包提供了很多常用数据集 数据按照用途一般分为三组:训练(train)、验证(validation)和测试(test)。使用训练数据集来训练模型,使用验证数据集跟踪模型在训练期间…...

论文翻译:Explainability for Large Language Models: A Survey
https://arxiv.org/pdf/2309.01029 目录 可解释性在大型语言模型中:一项调查摘要1 引言2 LLMs的训练范式2.1 传统微调范式2.2 提示范式 3 传统微调范式的解释3.1 局部解释3.1.1 基于特征归因的解释3.1.2 基于注意力的解释3.1.3 基于示例的解释 3.2 全局解释3.2.1 基…...

38 IRF+链路聚合+ACL+NAT组网架构
38 IRF+链路聚合+ACL+NAT组网架构 参考文献 34 IRF的实例-CSDN博客 35 解决单条链路故障问题-华三链路聚合-CSDN博客 36 最经典的ACL控制-CSDN博客 37 公私网转换技术-NAT基础-CSDN博客 32 华三vlan案例+STP-CSDN博客 一 网络架构...

【昇思学习打卡营打卡-第二十八天】MindNLP ChatGLM-6B StreamChat
MindNLP ChatGLM-6B StreamChat 本案例基于MindNLP和ChatGLM-6B实现一个聊天应用。 安装mindnlp pip install mindnlp安装mdtex2html pip install mdtex2html配置网络线路 export HF_ENDPOINThttps://hf-mirror.com代码开发 下载权重大约需要10分钟 from mindnlp.transf…...

前端打包部署后源码安全问题总结
随着现代Web应用越来越依赖于客户端技术,前端安全问题也随之突显。源码泄露是一个严重的安全问题,它不仅暴露了应用的内部逻辑和业务关键信息,还可能导致更广泛的安全风险。本文将详细介绍源码泄露的潜在风险,并提供一系列策略和工…...

扩展你的App:Xcode中App Extensions的深度指南
扩展你的App:Xcode中App Extensions的深度指南 在iOS开发的世界中,App Extensions提供了一种强大的方式,允许你的应用程序与系统和其他应用更紧密地集成。从今天起,我们将探索Xcode中App Extensions的神秘领域,学习如…...

【D3.js in Action 3 精译】1.3 D3 视角下的数据可视化最佳实践(下)
当前内容所在位置 第一部分 D3.js 基础知识 第一章 D3.js 简介 ✔️ 1.1 何为 D3.js?1.2 D3 生态系统——入门须知 1.2.1 HTML 与 DOM1.2.2 SVG - 可缩放矢量图形1.2.3 Canvas 与 WebGL1.2.4 CSS1.2.5 JavaScript1.2.6 Node 与 JavaScript 框架1.2.7 Observable 记事…...

Solus Linux简介
以下是学习笔记,具体详实的内容请参考官网:Home | Solus Solus Linux 是一个独立的 Linux 发行版,它以其现代的设计、优化的性能和友好的用户体验而著称。以下是一些关于 Solus Linux 的最新动向和特点: 1. **最新版本发布**&a…...

常见的排序算法,复杂度
稳定 / 非稳定排序:两个相等的数 排序前后 相对位置不变。插入排序(希尔排序): 每一趟将一个待排序记录,按其关键字的大小插入到已排好序的一组记录的适当位置上,直到所有待排序记录全部插入为止。稳定&…...

鸿蒙特色物联网实训室
一、 引言 在当今这个万物皆可连网的时代,物联网(IoT)正以前所未有的速度改变着我们的生活和工作方式。它如同一座桥梁,将实体世界与虚拟空间紧密相连,让数据成为驱动决策和创新的关键力量。随着物联网技术的不断成熟…...

JVM垃圾回收-----垃圾分类
一、垃圾分类定义 垃圾分类是JVM垃圾分类中的第一步,这一步将堆中的对象分为存活对象和垃圾对象两类。 在垃圾分类阶段,JVM会从一组根对象开始,通过对象之间的引用关系,遍历所有的对象,并将所有存活的对象进行标记。…...

前端基础之JavaScript学习——变量、数据类型、类型转换
大家好,我是来自CSDN的博主PleaSure乐事,今天我们开始有关JS的学习,希望有所帮助并巩固有关前端的知识。 我使用的编译器为vscode,浏览器使用为谷歌浏览器,使用webstorm或其他环境效果几乎一样,使用系统自…...

SQL常用数据过滤---IN操作符
在SQL中,IN操作符常用于过滤数据,允许在WHERE子句中指定多个可能的值。如果列中的值匹配IN操作符后面括号中的任何一个值,那么该行就会被选中。 以下是使用IN操作符的基本语法: SELECT column1, column2, ... FROM table_name WH…...

HDFS和FDFS
HDFS(Hadoop Distributed File System)和FDFS(FastDFS)是两种不同的分布式文件系统,它们各自有不同的设计目标和使用场景。以下是对它们的详细介绍: HDFS(Hadoop Distributed File System&…...

Flutter对接FlutterBugly 报错Zone mismatch
在Flutter对接FutterBlugy时报如下错误: Unhandled Exception: Zone mismatch. E/flutter ( 1292): The Flutter bindings were initialized in a different zone than is now being used. This will likely cause confusion and bugs...

Docker缩小镜像体积与搭建LNMP架构
镜像加速地址 {"registry-mirrors": ["https://docker.m.daocloud.io","https://docker.1panel.live"] } daemon.json 配置文件里面 bip 配置项中可以配置docker 的网段 {"graph": "/data/docker", #数据目录࿰…...

六边形动态特效404单页HTML源码
源码介绍 动态悬浮的六边形,旁边404文字以及跳转按钮,整体看着像科技二次元画风,页面简约美观,可以做网站错误页或者丢失页面,将下面的代码放到空白的HTML里面,然后上传到服务器里面,设置好重定向即可 效果预览 完整源码 <!DOCTYPE html> <html><head…...

BGP路径属性
路径属性分类 1. 公认属性(所有 BGP 路由器都能识别) (1) 公认必遵 a) AS path b)Origin c) Next hop (2) 公认任意 a) local preference b)atomic aggregate 2. 可选属性(…...

从零开始学量化~Ptrade使用教程(六)——盘后定价交易、港股通与债券通用质押式回购
盘后固定价交易 实现科创板、创业板的盘后固定价交易,界面如下显示: 交易 输入科创板或创业板代码,选择委托方向,输入委托价格、委托数量,点击“买入”或“卖出”按钮进行委托。可出现一个委托提示框提示是否继续委托操…...

Docker 三剑客
文章目录 Docker 三剑客1. Docker Engine功能与特点:工作原理:示例命令: 2. Docker Compose功能与特点:工作原理:示例文件 (docker-compose.yml):示例命令: 3. Docker Swarm功能与特点ÿ…...

每天一个数据分析题(四百三十一)- 卡方检验
在列联表分析中,下列不能用卡方检验的是() A. 多个构成的比较 B. 多个率的比较 C. 多个均值的比较 D. 以上都不是 数据分析认证考试介绍:点击进入 题目来源于CDA模拟题库 点击此处获取答案 数据分析专项练习题库 内容涵盖…...

Flowable-流程图标与流程演示
BPMN 2.0是业务流程建模符号2.0的缩写。它由Business Process Management Initiative这个非营利协会创建并不断发展。作为一种标识,BPMN 2.0是使用一些符号来明确业务流程设计流程图的一整套符号规范,它能增进业务建模时的沟通效率。目前BPMN2.0是最新的…...

MyBatis源码中的设计模式2
组合模式的应用 组合模式介绍 组合模式(Composite Pattern) 的定义是:将对象组合成树形结构以表示整体和部分的层次结构。组合模式可以让用户统一对待单个对象和对象的组合。 比如:Windows操作系统中的目录结构,通过tree命令实现树形结构展…...

AI发展中的伦理挑战与应对策略
AI发展中的伦理挑战与应对策略 人工智能(AI)的快速发展在为社会带来许多便利和创新的同时,也带来了诸多伦理挑战。这些挑战主要集中在数据隐私侵犯、信息茧房的制造、歧视性算法、深度伪造技术等方面。针对这些问题,需要从多个层…...

基于用户非兴趣/非偏好/非习惯的推荐
基于用户非兴趣、非偏好、非习惯的推荐是一种个性化推荐技术,旨在为用户提供与其日常行为和兴趣模式不同的推荐内容。这种推荐方法的目的是打破用户的信息过滤和习惯,发现新的、潜在的兴趣点,从而提供更广泛和多样化的推荐结果。 通过收集和分…...

Abaqus基于CT断层扫描的三维重建插件CT2Model 3D
插件介绍 AbyssFish CT2Model 3D V1.0 插件可将采用X射线等方法获取的计算机断层扫描(CT)图像在Abaqus有限元软件内进行三维重建,进而高效获取可供模拟分析的有限元模型。插件可用于医学影像三维重构、混凝土细观三维重建、岩心数字化等领域…...

Mindspore框架CycleGAN模型实现图像风格迁移|(三)损失函数计算
Mindspore框架:CycleGAN模型实现图像风格迁移算法 Mindspore框架CycleGAN模型实现图像风格迁移|(一)CycleGAN神经网络模型构建 Mindspore框架CycleGAN模型实现图像风格迁移|(二)实例数据集(苹果2橘子&…...

ENSP中VLAN的设置
VLAN的详细介绍 VLAN(Virtual Local Area Network)即虚拟局域网,是一种将一个物理的局域网在逻辑上划分成多个广播域的技术。 以下是关于 VLAN 的一些详细介绍: 一、基本概念 1. 作用: - 隔离广播域:…...

《后端程序员 · Nacos 常见配置 · 第一弹》
📢 大家好,我是 【战神刘玉栋】,有10多年的研发经验,致力于前后端技术栈的知识沉淀和传播。 💗 🌻 CSDN入驻不久,希望大家多多支持,后续会继续提升文章质量,绝不滥竽充数…...