当前位置: 首页 > news >正文

【深度学习入门篇 ⑦】PyTorch池化层

【🍊易编橙:一个帮助编程小伙伴少走弯路的终身成长社群🍊】

大家好,我是小森( ﹡ˆoˆ﹡ ) ! 易编橙·终身成长社群创始团队嘉宾,橙似锦计划领衔成员、阿里云专家博主、腾讯云内容共创官、CSDN人工智能领域优质创作者 。


池化层 (Pooling) 降低维度,缩减模型大小,提高计算速度. 即: 主要对卷积层学习到的特征图进行下采样(SubSampling)处理 。

  • 通过下采样,我们可以提取出特征图中最重要的特征,同时忽略掉一些不重要的细节。
  • 上采样是指增加数据(图像)的尺寸;通常用于图像的分割、超分辨率重建或生成模型中,以便将特征图恢复到原始图像的尺寸或更大的尺寸。 

池化层

池化包含最大池化和平均池化,有一维池化,二维池化,三维池化,在这里以二维池化为例

最大池化

最大池化就是求一个区域中的最大值,来代替该区域。

torch.nn.MaxPool2d(kernel_size, stride=None, padding=0, dilation=1, return_indices=False, ceil_mode=False)

假设输入的尺寸是(𝑁,𝐶,𝐻,𝑊),输出尺寸是(𝑁,𝐶,𝐻𝑜𝑢𝑡,𝑊𝑜𝑢𝑡),kernel_size是(𝑘𝐻,𝑘𝑊),可以写成下面形式 :

其中,输入参数 kernel_sizestridepaddingdilation可以是

  • 一个 int :代表长宽使用同样的参数
  • 两个int组成的元组:第一个int用在H维度,第二个int用在W维度
import torch
import torch.nn as nn
#长宽一致的池化,核尺寸为3x3,池化步长为2
ml = nnMaxPool2d(3, stride=2)
#长宽不一致的池化
m2 = nn.MaxPool2d((3,2), stride=(2,1))
input = torch.randn(4,3,24,24)
output1 = m1( input)
output2 = m2( input)
print( "input.shape = " ,input.shape)
print( "output1.shape = " , output1.shape)
print( "output2.shape = " , output2.shape)

 输出:

input.shape = torch.size([4,3,24,24])
output1.shape = torch. size([4,3,11,11])
output2.shape = torch.size([4,3,11,23])
平均池化

平均池化就是用一个区域中的平均数来代替本区域

torch.nn.AvgPool2d(kernel_size, stride=None, padding=0, ceil_mode=False, count_include_pad=True, divisor_override=None)

import torch
import torch.nn as nn
#长宽一致的池化,核尺寸为3x3,池化步长为2
ml = nn. AvgPool2d( 3, stride=2)
#长宽不一致的池化
m2 = nn. AvgPool2d(( 3,2), stride=(2,1) )
input = torch.randn(4,3,24,24)
output1 = m1( input)
output2 = m2( input)
print("input.shape = ",input. shape)
print("output1.shape = " , output1.shape)
print( "output2.shape = ", output2.shape)
  • randn是生成形状为[batch_size, channels, height, width] 

输出:

input.shape = torch.size([4,3,24,24])
output1.shape = torch.size([4,3,11,11])
output2.shape = torch.size([4,3,11,23])

BN层

BN,即Batch Normalization,是对每一个batch的数据进行归一化操作,可以使得网络训练更稳定,加速网络的收敛。

import torch
import torch.nn as nn
#批量归一化层(具有可学习参数)
m_learnable = nn. BatchNorm2d(100)
#批量归一化层(不具有可学习参数)
m_non_learnable = nn.BatchNorm2d(100,affine=False)
#随机生成输入数据
input = torch.randn(20,100,35,45)
#应用具有可学习参数的批量归一化层
output_learnable = m_learnable(input)
#应用不具有可学习参数的批量归一化层
output_non_learnable = m_non_learnable(input)
print( "input.shape = ", input.shape)
print( "output_learnable.shape = ", output_learnable.shape)
print( "output_non_learnable.shape = ", output_non_learnable.shape)

 输出:

input.shape = torch.size([20,100,35,45])
output_learnable.shape = torch.size( [20,100,35,45])
output_non_learnable.shape = torch.size([20,100,35,45])

常见的层就是上面提到的这些,如果这些层结构被反复调用,我们可以将其封装成一个个不同的模块。

案例:复现LeNet

LeNet结构,使用PyTorch进行复现,卷积核大小5x5,最大池化层,核大小2x2

import torch
import torch.nn as nn
from torchsummary import summary
class LeNet( nn . Module):def _init_( self,num_classes=10):super(Leet, self)._init__()self.conv1 = nn.conv2d( in_channels=3,out_channels=6,kernel_size=5)self.pool1 = nn. MaxPool2d(kernel_size=2)self.conv2 = nn.Conv2d(in_channels=6,out_channels=16,kernel_size=5)self.pool2 = nn. MaxPool2d(kernel_size=2)self.conv3 = nn.conv2d(in_channels=16,out_channels=120, kernel_size=5)self.fc1 = nn.Linear(in_features=120,out_features=84)self.fc2 = nn.Linear(in_features=84,out_features=10)def forward(self, x):#通过卷积层、ReLU和池化层x = self.conv1(x)x = self.pool1(x)x = self.conv2(x)x = self.pool2(x)x = self.conv3(x)x = x.view( -1,120)x = self.fc1(x)x = self.fc2(x)return x
#创建网络实例
num_classes = 10
net = LeNet( num_classes)#创建一个输入
batch_size = 4
input_tensor = torch.randn(batch_size,3,32,32)
# 假设输入是32x32的RGB图像
#将输入Tensor传递给网络
output = net(input_tensor)
# #显示输出Tensor的形状
print(output.shape)
summary(net,(3,32,32))

Sequential: 顺序容器

Sequential属于顺序容器。模块将按照在构造函数中传递的顺序从上到下进行运算。

使用OrderedDict,可以进一步对传进来的层进行重命名。

#使用sequential来创建小模块,当有输入进来,会从上到下依次经过所有模块
model = nn. Sequential(
nn.conv2d(1,20,5),nn.ReLu() ,
nn.conv2d(20,64,5),nn.ReLU()
)
#使用orderedDict,可以对传进来的模块进行命名,实现效果同上
from collections import orderedDict
model = nn. sequential ( orderedDict([( 'conv1 ', nn.Conv2d( 1,20,5)),( 'relu1 ', nn.ReLU( ) ),( 'conv2 ', nn.conv2d(20,64,5)),( 'relu2 ', nn.ReLU())
]))

除此之外,还可以用 ModuleList和 ModuleDict 来存放子模块,但是用的不多,掌握了上面的内容就足够了。

相关文章:

【深度学习入门篇 ⑦】PyTorch池化层

【🍊易编橙:一个帮助编程小伙伴少走弯路的终身成长社群🍊】 大家好,我是小森( ﹡ˆoˆ﹡ ) ! 易编橙终身成长社群创始团队嘉宾,橙似锦计划领衔成员、阿里云专家博主、腾讯云内容共创官…...

【Pytorch】数据集的加载和处理(一)

Pytorch torchvision 包提供了很多常用数据集 数据按照用途一般分为三组:训练(train)、验证(validation)和测试(test)。使用训练数据集来训练模型,使用验证数据集跟踪模型在训练期间…...

论文翻译:Explainability for Large Language Models: A Survey

https://arxiv.org/pdf/2309.01029 目录 可解释性在大型语言模型中:一项调查摘要1 引言2 LLMs的训练范式2.1 传统微调范式2.2 提示范式 3 传统微调范式的解释3.1 局部解释3.1.1 基于特征归因的解释3.1.2 基于注意力的解释3.1.3 基于示例的解释 3.2 全局解释3.2.1 基…...

38 IRF+链路聚合+ACL+NAT组网架构

38 IRF+链路聚合+ACL+NAT组网架构 参考文献 34 IRF的实例-CSDN博客 35 解决单条链路故障问题-华三链路聚合-CSDN博客 36 最经典的ACL控制-CSDN博客 37 公私网转换技术-NAT基础-CSDN博客 32 华三vlan案例+STP-CSDN博客 一 网络架构...

【昇思学习打卡营打卡-第二十八天】MindNLP ChatGLM-6B StreamChat

MindNLP ChatGLM-6B StreamChat 本案例基于MindNLP和ChatGLM-6B实现一个聊天应用。 安装mindnlp pip install mindnlp安装mdtex2html pip install mdtex2html配置网络线路 export HF_ENDPOINThttps://hf-mirror.com代码开发 下载权重大约需要10分钟 from mindnlp.transf…...

前端打包部署后源码安全问题总结

随着现代Web应用越来越依赖于客户端技术,前端安全问题也随之突显。源码泄露是一个严重的安全问题,它不仅暴露了应用的内部逻辑和业务关键信息,还可能导致更广泛的安全风险。本文将详细介绍源码泄露的潜在风险,并提供一系列策略和工…...

扩展你的App:Xcode中App Extensions的深度指南

扩展你的App:Xcode中App Extensions的深度指南 在iOS开发的世界中,App Extensions提供了一种强大的方式,允许你的应用程序与系统和其他应用更紧密地集成。从今天起,我们将探索Xcode中App Extensions的神秘领域,学习如…...

【D3.js in Action 3 精译】1.3 D3 视角下的数据可视化最佳实践(下)

当前内容所在位置 第一部分 D3.js 基础知识 第一章 D3.js 简介 ✔️ 1.1 何为 D3.js?1.2 D3 生态系统——入门须知 1.2.1 HTML 与 DOM1.2.2 SVG - 可缩放矢量图形1.2.3 Canvas 与 WebGL1.2.4 CSS1.2.5 JavaScript1.2.6 Node 与 JavaScript 框架1.2.7 Observable 记事…...

Solus Linux简介

以下是学习笔记,具体详实的内容请参考官网:Home | Solus Solus Linux 是一个独立的 Linux 发行版,它以其现代的设计、优化的性能和友好的用户体验而著称。以下是一些关于 Solus Linux 的最新动向和特点: 1. **最新版本发布**&a…...

常见的排序算法,复杂度

稳定 / 非稳定排序:两个相等的数 排序前后 相对位置不变。插入排序(希尔排序): 每一趟将一个待排序记录,按其关键字的大小插入到已排好序的一组记录的适当位置上,直到所有待排序记录全部插入为止。稳定&…...

鸿蒙特色物联网实训室

一、 引言 在当今这个万物皆可连网的时代,物联网(IoT)正以前所未有的速度改变着我们的生活和工作方式。它如同一座桥梁,将实体世界与虚拟空间紧密相连,让数据成为驱动决策和创新的关键力量。随着物联网技术的不断成熟…...

JVM垃圾回收-----垃圾分类

一、垃圾分类定义 垃圾分类是JVM垃圾分类中的第一步,这一步将堆中的对象分为存活对象和垃圾对象两类。 在垃圾分类阶段,JVM会从一组根对象开始,通过对象之间的引用关系,遍历所有的对象,并将所有存活的对象进行标记。…...

前端基础之JavaScript学习——变量、数据类型、类型转换

大家好,我是来自CSDN的博主PleaSure乐事,今天我们开始有关JS的学习,希望有所帮助并巩固有关前端的知识。 我使用的编译器为vscode,浏览器使用为谷歌浏览器,使用webstorm或其他环境效果几乎一样,使用系统自…...

SQL常用数据过滤---IN操作符

在SQL中,IN操作符常用于过滤数据,允许在WHERE子句中指定多个可能的值。如果列中的值匹配IN操作符后面括号中的任何一个值,那么该行就会被选中。 以下是使用IN操作符的基本语法: SELECT column1, column2, ... FROM table_name WH…...

HDFS和FDFS

HDFS(Hadoop Distributed File System)和FDFS(FastDFS)是两种不同的分布式文件系统,它们各自有不同的设计目标和使用场景。以下是对它们的详细介绍: HDFS(Hadoop Distributed File System&…...

Flutter对接FlutterBugly 报错Zone mismatch

在Flutter对接FutterBlugy时报如下错误: Unhandled Exception: Zone mismatch. E/flutter ( 1292): The Flutter bindings were initialized in a different zone than is now being used. This will likely cause confusion and bugs...

Docker缩小镜像体积与搭建LNMP架构

镜像加速地址 {"registry-mirrors": ["https://docker.m.daocloud.io","https://docker.1panel.live"] } daemon.json 配置文件里面 bip 配置项中可以配置docker 的网段 {"graph": "/data/docker", #数据目录&#xff0…...

六边形动态特效404单页HTML源码

源码介绍 动态悬浮的六边形,旁边404文字以及跳转按钮,整体看着像科技二次元画风,页面简约美观,可以做网站错误页或者丢失页面,将下面的代码放到空白的HTML里面,然后上传到服务器里面,设置好重定向即可 效果预览 完整源码 <!DOCTYPE html> <html><head…...

BGP路径属性

路径属性分类 1. 公认属性&#xff08;所有 BGP 路由器都能识别&#xff09; (1) 公认必遵 a&#xff09; AS path b&#xff09;Origin c&#xff09; Next hop (2) 公认任意 a&#xff09; local preference b&#xff09;atomic aggregate 2. 可选属性&#xff08;…...

从零开始学量化~Ptrade使用教程(六)——盘后定价交易、港股通与债券通用质押式回购

盘后固定价交易 实现科创板、创业板的盘后固定价交易&#xff0c;界面如下显示&#xff1a; 交易 输入科创板或创业板代码&#xff0c;选择委托方向&#xff0c;输入委托价格、委托数量&#xff0c;点击“买入”或“卖出”按钮进行委托。可出现一个委托提示框提示是否继续委托操…...

深入剖析AI大模型:大模型时代的 Prompt 工程全解析

今天聊的内容&#xff0c;我认为是AI开发里面非常重要的内容。它在AI开发里无处不在&#xff0c;当你对 AI 助手说 "用李白的风格写一首关于人工智能的诗"&#xff0c;或者让翻译模型 "将这段合同翻译成商务日语" 时&#xff0c;输入的这句话就是 Prompt。…...

uni-app学习笔记二十二---使用vite.config.js全局导入常用依赖

在前面的练习中&#xff0c;每个页面需要使用ref&#xff0c;onShow等生命周期钩子函数时都需要像下面这样导入 import {onMounted, ref} from "vue" 如果不想每个页面都导入&#xff0c;需要使用node.js命令npm安装unplugin-auto-import npm install unplugin-au…...

连锁超市冷库节能解决方案:如何实现超市降本增效

在连锁超市冷库运营中&#xff0c;高能耗、设备损耗快、人工管理低效等问题长期困扰企业。御控冷库节能解决方案通过智能控制化霜、按需化霜、实时监控、故障诊断、自动预警、远程控制开关六大核心技术&#xff0c;实现年省电费15%-60%&#xff0c;且不改动原有装备、安装快捷、…...

Qt Http Server模块功能及架构

Qt Http Server 是 Qt 6.0 中引入的一个新模块&#xff0c;它提供了一个轻量级的 HTTP 服务器实现&#xff0c;主要用于构建基于 HTTP 的应用程序和服务。 功能介绍&#xff1a; 主要功能 HTTP服务器功能&#xff1a; 支持 HTTP/1.1 协议 简单的请求/响应处理模型 支持 GET…...

leetcodeSQL解题:3564. 季节性销售分析

leetcodeSQL解题&#xff1a;3564. 季节性销售分析 题目&#xff1a; 表&#xff1a;sales ---------------------- | Column Name | Type | ---------------------- | sale_id | int | | product_id | int | | sale_date | date | | quantity | int | | price | decimal | -…...

MySQL用户和授权

开放MySQL白名单 可以通过iptables-save命令确认对应客户端ip是否可以访问MySQL服务&#xff1a; test: # iptables-save | grep 3306 -A mp_srv_whitelist -s 172.16.14.102/32 -p tcp -m tcp --dport 3306 -j ACCEPT -A mp_srv_whitelist -s 172.16.4.16/32 -p tcp -m tcp -…...

安全突围:重塑内生安全体系:齐向东在2025年BCS大会的演讲

文章目录 前言第一部分&#xff1a;体系力量是突围之钥第一重困境是体系思想落地不畅。第二重困境是大小体系融合瓶颈。第三重困境是“小体系”运营梗阻。 第二部分&#xff1a;体系矛盾是突围之障一是数据孤岛的障碍。二是投入不足的障碍。三是新旧兼容难的障碍。 第三部分&am…...

免费数学几何作图web平台

光锐软件免费数学工具&#xff0c;maths,数学制图&#xff0c;数学作图&#xff0c;几何作图&#xff0c;几何&#xff0c;AR开发,AR教育,增强现实,软件公司,XR,MR,VR,虚拟仿真,虚拟现实,混合现实,教育科技产品,职业模拟培训,高保真VR场景,结构互动课件,元宇宙http://xaglare.c…...

负载均衡器》》LVS、Nginx、HAproxy 区别

虚拟主机 先4&#xff0c;后7...

高效的后台管理系统——可进行二次开发

随着互联网技术的迅猛发展&#xff0c;企业的数字化管理变得愈加重要。后台管理系统作为数据存储与业务管理的核心&#xff0c;成为了现代企业不可或缺的一部分。今天我们要介绍的是一款名为 若依后台管理框架 的系统&#xff0c;它不仅支持跨平台应用&#xff0c;还能提供丰富…...