当前位置: 首页 > news >正文

R语言实现SVM算法——分类与回归

### 11.6	基于支持向量机进行类别预测 ###
# 构建数据子集
X <- iris[iris$Species!= 'virginica',2:3] # 自变量:Sepal.Width, Petal.Length
y <-  iris[iris$Species != 'virginica','Species'] # 因变量
plot(X,col = y,pch = as.numeric(y)+15,cex = 1.5) # 绘制散点图
# 构建支持向量机分类器
library(e1071)
svm.model <- svm(x = X,y = y,kernel = 'linear',degree = 1,scale = FALSE)
summary(svm.model)
svm.model$index # 查看支持向量的序号
svm.model$nSV   # 查看各类的支持向量个数
svm.model$SV    # 查看支持向量的自变量值# 绘制SVM分类器的判别边界实线、支持向量及最大间隔分类
plot_svc_decision_boundary <- function(svm.model,X) {w = t(svm.model$coefs) %*% svm.model$SV b = -svm.model$rho margin = 1/w[2]abline(a = -b/w[1,2],b=-w[1,1]/w[1,2],col = "red",lwd=2)points(X[svm.model$index,],col="blue",cex=2.5,lwd = 2)abline(a = -b/w[1,2]+margin,b=-w[1,1]/w[1,2],col = "grey",lwd=2,lty=2)abline(a = -b/w[1,2]-margin,b=-w[1,1]/w[1,2],col = "grey",lwd=2,lty=2)
}
# 增加分割线的散点图
plot(X,col = y,pch = as.numeric(y)+15,cex = 1.5) # 绘制散点图
plot_svc_decision_boundary(svm.model,X) # 增加决策边界和标注支持向量# SVM对特征缩放敏感
Xs <- data.frame(x1 = c(1,5,3,5),x2 = c(50,20,80,60))
ys <- factor(c(0,0,1,1))svm_clf <- svm(x = Xs,y = ys,cost=100,kernel = "linear",scale = FALSE)
Xs_scale <- apply(Xs,2,scale) # 标准化处理
svm_clf1 <- svm(x = Xs_scale,y = ys,cost=100,kernel = "linear",scale = FALSE)
par(mfrow=c(1,2))
plot(Xs,col=ys,pch=as.numeric(ys)+15,cex=1.5,main='Unscaled')
plot_svc_decision_boundary(svm_clf,Xs)
plot(Xs_scale,col = ys,pch=as.numeric(ys)+15,cex=1.5,main="scaled")
plot_svc_decision_boundary(svm_clf1,Xs_scale)
par(mfrow=c(1,1))# 将参数scale设置为TRUE
svm_clf2 <- svm(x = Xs,y = ys,cost=100,kernel = "linear",scale = TRUE)
# 可以查看标准化的中心和标准差
svm_clf2$x.scale
# 查看手工标准化的均值和标准差
apply(Xs,2,function(x) {c('center' = mean(x,na.rm=TRUE),'scale' = sd(x,na.rm=TRUE))})# 软间隔分类
X = iris[iris$Species!= 'virginica',1:2] # "Sepal.Length" "Sepal.Width"
y = iris[iris$Species != 'virginica','Species']
svm_smallC <- svm(x = X,y = y,cost = 1,kernel = "linear",scale = FALSE)
svm_largeC <- svm(x = X,y = y,cost = 100,kernel = "linear",scale = FALSE)
par(mfrow=c(1,2))
plot(X,col=y,pch=as.numeric(y)+15,main='small cost')
plot_svc_decision_boundary(svm_smallC,X)
plot(X,col=y,pch=as.numeric(y)+15,main='large cost')
plot_svc_decision_boundary(svm_largeC,X)
par(mfrow=c(1,1))# 非线性支持向量机分类
# 导入数据集
moons <- read.csv('moons.csv')
# 查看数据结构
str(moons)# 编写绘制决策边界函数
visualize_classifier <- function(model,X,y,xlim,ylim,title = NA){x1s <- seq(xlim[1],xlim[2],length.out=200)x2s <- seq(ylim[1],ylim[2],length.out=200)Z <- expand.grid(x1s,x2s)colnames(Z) <- colnames(X)y_pred <- predict(model,Z,type = 'class')y_pred <- matrix(y_pred,length(x1s))filled.contour(x1s,x2s,y_pred,nlevels = 2,col = RColorBrewer::brewer.pal(length(unique(y)),'Pastel1'),key.axes = FALSE,plot.axes = {axis(1);axis(2);points(X[,1],X[,2],pch=as.numeric(y)+16,col=as.numeric(y)+2,cex=1.5)},xlab = colnames(X)[1],ylab = colnames(X)[2])title(main = title)
}xlim <- c(-1.5,2.5)
ylim <- c(-1,1.5)# 构建线性支持向量机分类
svm_linear <- svm(x = moons[,1:2],y = factor(moons[,3]),kernel = 'linear',degree = 1,cost = 10)
# 绘制决策边界
visualize_classifier(svm_linear,moons[,1:2],moons[,3],xlim,ylim,title = '线性支持向量机分类')# 构建非线支持向量机分类
svm_poly <- svm(x = moons[,1:2],y = factor(moons[,3]),kernel = 'polynomial',degree = 3,cost = 5)
# 绘制决策边界
visualize_classifier(svm_poly,moons[,1:2],moons[,3],xlim,ylim,title = '非线性支持向量机分类')# 多项式核
svm_poly1 <- svm(x = moons[,1:2],y = factor(moons[,3]),kernel = 'polynomial',degree = 3,cost = 5,coef0 = 1)
visualize_classifier(svm_poly1,moons[,1:2],moons[,3],xlim,ylim,'多项式核')# 增加相似性特征
svm_rbf <- svm(x = moons[,1:2],y = factor(moons[,3]),kernel='radial',gamma = 0.1, cost = 0.01)
svm_rbf1 <- svm(x = moons[,1:2],y = factor(moons[,3]),kernel='radial',gamma = 0.1, cost = 1000)
svm_rbf2 <- svm(x = moons[,1:2],y = factor(moons[,3]),kernel='radial',gamma = 5, cost =1000)
visualize_classifier(svm_rbf,moons[,1:2],moons[,3],xlim,ylim,'gamma = 0.1, cost = 0.01')
visualize_classifier(svm_rbf1,moons[,1:2],moons[,3],xlim,ylim,'gamma = 0.1, cost = 1000')
visualize_classifier(svm_rbf2,moons[,1:2],moons[,3],xlim,ylim,'gamma = 5, cost = 1000')# 调整支持向量机
# 使用tune.svm函数调整支持向量机
moons$y <- as.factor(moons$y)
tuned <- tune.svm(y ~ .,data = moons,gamma = 10^(-5:-1),cost = 10^(1:3))
summary(tuned) # 得到模型相关信息# 利用最佳参数设置支持向量机
model.tuned <- svm(y ~ .,data = moons,gamma = tuned$best.parameters$gamma,cost = tuned$best.parameters$cost)
# 对训练集进行类别预测
pred <- predict(model.tuned,newdata = moons[,1:2])
#生成混淆矩阵,观察预测精度 
table('actual' = moons$y,'prediction'= pred)

相关文章:

R语言实现SVM算法——分类与回归

### 11.6 基于支持向量机进行类别预测 ### # 构建数据子集 X <- iris[iris$Species! virginica,2:3] # 自变量&#xff1a;Sepal.Width, Petal.Length y <- iris[iris$Species ! virginica,Species] # 因变量 plot(X,col y,pch as.numeric(y)15,cex 1.5) # 绘制散点图…...

React@16.x(57)Redux@4.x(6)- 实现 bindActionCreators

目录 1&#xff0c;分析1&#xff0c;直接传入函数2&#xff0c;传入对象 2&#xff0c;实现 1&#xff0c;分析 一般情况下&#xff0c;action 并不是一个写死的对象&#xff0c;而是通过函数来获取。 而 bindActionCreators 的作用&#xff1a;为了更方便的使用创建 action…...

【深度学习入门篇 ⑦】PyTorch池化层

【&#x1f34a;易编橙&#xff1a;一个帮助编程小伙伴少走弯路的终身成长社群&#x1f34a;】 大家好&#xff0c;我是小森( &#xfe61;ˆoˆ&#xfe61; ) &#xff01; 易编橙终身成长社群创始团队嘉宾&#xff0c;橙似锦计划领衔成员、阿里云专家博主、腾讯云内容共创官…...

【Pytorch】数据集的加载和处理(一)

Pytorch torchvision 包提供了很多常用数据集 数据按照用途一般分为三组&#xff1a;训练&#xff08;train&#xff09;、验证&#xff08;validation&#xff09;和测试&#xff08;test&#xff09;。使用训练数据集来训练模型&#xff0c;使用验证数据集跟踪模型在训练期间…...

论文翻译:Explainability for Large Language Models: A Survey

https://arxiv.org/pdf/2309.01029 目录 可解释性在大型语言模型中&#xff1a;一项调查摘要1 引言2 LLMs的训练范式2.1 传统微调范式2.2 提示范式 3 传统微调范式的解释3.1 局部解释3.1.1 基于特征归因的解释3.1.2 基于注意力的解释3.1.3 基于示例的解释 3.2 全局解释3.2.1 基…...

38 IRF+链路聚合+ACL+NAT组网架构

38 IRF+链路聚合+ACL+NAT组网架构 参考文献 34 IRF的实例-CSDN博客 35 解决单条链路故障问题-华三链路聚合-CSDN博客 36 最经典的ACL控制-CSDN博客 37 公私网转换技术-NAT基础-CSDN博客 32 华三vlan案例+STP-CSDN博客 一 网络架构...

【昇思学习打卡营打卡-第二十八天】MindNLP ChatGLM-6B StreamChat

MindNLP ChatGLM-6B StreamChat 本案例基于MindNLP和ChatGLM-6B实现一个聊天应用。 安装mindnlp pip install mindnlp安装mdtex2html pip install mdtex2html配置网络线路 export HF_ENDPOINThttps://hf-mirror.com代码开发 下载权重大约需要10分钟 from mindnlp.transf…...

前端打包部署后源码安全问题总结

随着现代Web应用越来越依赖于客户端技术&#xff0c;前端安全问题也随之突显。源码泄露是一个严重的安全问题&#xff0c;它不仅暴露了应用的内部逻辑和业务关键信息&#xff0c;还可能导致更广泛的安全风险。本文将详细介绍源码泄露的潜在风险&#xff0c;并提供一系列策略和工…...

扩展你的App:Xcode中App Extensions的深度指南

扩展你的App&#xff1a;Xcode中App Extensions的深度指南 在iOS开发的世界中&#xff0c;App Extensions提供了一种强大的方式&#xff0c;允许你的应用程序与系统和其他应用更紧密地集成。从今天起&#xff0c;我们将探索Xcode中App Extensions的神秘领域&#xff0c;学习如…...

【D3.js in Action 3 精译】1.3 D3 视角下的数据可视化最佳实践(下)

当前内容所在位置 第一部分 D3.js 基础知识 第一章 D3.js 简介 ✔️ 1.1 何为 D3.js&#xff1f;1.2 D3 生态系统——入门须知 1.2.1 HTML 与 DOM1.2.2 SVG - 可缩放矢量图形1.2.3 Canvas 与 WebGL1.2.4 CSS1.2.5 JavaScript1.2.6 Node 与 JavaScript 框架1.2.7 Observable 记事…...

Solus Linux简介

以下是学习笔记&#xff0c;具体详实的内容请参考官网&#xff1a;Home | Solus Solus Linux 是一个独立的 Linux 发行版&#xff0c;它以其现代的设计、优化的性能和友好的用户体验而著称。以下是一些关于 Solus Linux 的最新动向和特点&#xff1a; 1. **最新版本发布**&a…...

常见的排序算法,复杂度

稳定 / 非稳定排序&#xff1a;两个相等的数 排序前后 相对位置不变。插入排序&#xff08;希尔排序&#xff09;&#xff1a; 每一趟将一个待排序记录&#xff0c;按其关键字的大小插入到已排好序的一组记录的适当位置上&#xff0c;直到所有待排序记录全部插入为止。稳定&…...

鸿蒙特色物联网实训室

一、 引言 在当今这个万物皆可连网的时代&#xff0c;物联网&#xff08;IoT&#xff09;正以前所未有的速度改变着我们的生活和工作方式。它如同一座桥梁&#xff0c;将实体世界与虚拟空间紧密相连&#xff0c;让数据成为驱动决策和创新的关键力量。随着物联网技术的不断成熟…...

JVM垃圾回收-----垃圾分类

一、垃圾分类定义 垃圾分类是JVM垃圾分类中的第一步&#xff0c;这一步将堆中的对象分为存活对象和垃圾对象两类。 在垃圾分类阶段&#xff0c;JVM会从一组根对象开始&#xff0c;通过对象之间的引用关系&#xff0c;遍历所有的对象&#xff0c;并将所有存活的对象进行标记。…...

前端基础之JavaScript学习——变量、数据类型、类型转换

大家好&#xff0c;我是来自CSDN的博主PleaSure乐事&#xff0c;今天我们开始有关JS的学习&#xff0c;希望有所帮助并巩固有关前端的知识。 我使用的编译器为vscode&#xff0c;浏览器使用为谷歌浏览器&#xff0c;使用webstorm或其他环境效果几乎一样&#xff0c;使用系统自…...

SQL常用数据过滤---IN操作符

在SQL中&#xff0c;IN操作符常用于过滤数据&#xff0c;允许在WHERE子句中指定多个可能的值。如果列中的值匹配IN操作符后面括号中的任何一个值&#xff0c;那么该行就会被选中。 以下是使用IN操作符的基本语法&#xff1a; SELECT column1, column2, ... FROM table_name WH…...

HDFS和FDFS

HDFS&#xff08;Hadoop Distributed File System&#xff09;和FDFS&#xff08;FastDFS&#xff09;是两种不同的分布式文件系统&#xff0c;它们各自有不同的设计目标和使用场景。以下是对它们的详细介绍&#xff1a; HDFS&#xff08;Hadoop Distributed File System&…...

Flutter对接FlutterBugly 报错Zone mismatch

在Flutter对接FutterBlugy时报如下错误: Unhandled Exception: Zone mismatch. E/flutter ( 1292): The Flutter bindings were initialized in a different zone than is now being used. This will likely cause confusion and bugs...

Docker缩小镜像体积与搭建LNMP架构

镜像加速地址 {"registry-mirrors": ["https://docker.m.daocloud.io","https://docker.1panel.live"] } daemon.json 配置文件里面 bip 配置项中可以配置docker 的网段 {"graph": "/data/docker", #数据目录&#xff0…...

六边形动态特效404单页HTML源码

源码介绍 动态悬浮的六边形,旁边404文字以及跳转按钮,整体看着像科技二次元画风,页面简约美观,可以做网站错误页或者丢失页面,将下面的代码放到空白的HTML里面,然后上传到服务器里面,设置好重定向即可 效果预览 完整源码 <!DOCTYPE html> <html><head…...

linux之kylin系统nginx的安装

一、nginx的作用 1.可做高性能的web服务器 直接处理静态资源&#xff08;HTML/CSS/图片等&#xff09;&#xff0c;响应速度远超传统服务器类似apache支持高并发连接 2.反向代理服务器 隐藏后端服务器IP地址&#xff0c;提高安全性 3.负载均衡服务器 支持多种策略分发流量…...

云计算——弹性云计算器(ECS)

弹性云服务器&#xff1a;ECS 概述 云计算重构了ICT系统&#xff0c;云计算平台厂商推出使得厂家能够主要关注应用管理而非平台管理的云平台&#xff0c;包含如下主要概念。 ECS&#xff08;Elastic Cloud Server&#xff09;&#xff1a;即弹性云服务器&#xff0c;是云计算…...

linux 下常用变更-8

1、删除普通用户 查询用户初始UID和GIDls -l /home/ ###家目录中查看UID cat /etc/group ###此文件查看GID删除用户1.编辑文件 /etc/passwd 找到对应的行&#xff0c;YW343:x:0:0::/home/YW343:/bin/bash 2.将标红的位置修改为用户对应初始UID和GID&#xff1a; YW3…...

3-11单元格区域边界定位(End属性)学习笔记

返回一个Range 对象&#xff0c;只读。该对象代表包含源区域的区域上端下端左端右端的最后一个单元格。等同于按键 End 向上键(End(xlUp))、End向下键(End(xlDown))、End向左键(End(xlToLeft)End向右键(End(xlToRight)) 注意&#xff1a;它移动的位置必须是相连的有内容的单元格…...

10-Oracle 23 ai Vector Search 概述和参数

一、Oracle AI Vector Search 概述 企业和个人都在尝试各种AI&#xff0c;使用客户端或是内部自己搭建集成大模型的终端&#xff0c;加速与大型语言模型&#xff08;LLM&#xff09;的结合&#xff0c;同时使用检索增强生成&#xff08;Retrieval Augmented Generation &#…...

Cilium动手实验室: 精通之旅---13.Cilium LoadBalancer IPAM and L2 Service Announcement

Cilium动手实验室: 精通之旅---13.Cilium LoadBalancer IPAM and L2 Service Announcement 1. LAB环境2. L2公告策略2.1 部署Death Star2.2 访问服务2.3 部署L2公告策略2.4 服务宣告 3. 可视化 ARP 流量3.1 部署新服务3.2 准备可视化3.3 再次请求 4. 自动IPAM4.1 IPAM Pool4.2 …...

算法打卡第18天

从中序与后序遍历序列构造二叉树 (力扣106题) 给定两个整数数组 inorder 和 postorder &#xff0c;其中 inorder 是二叉树的中序遍历&#xff0c; postorder 是同一棵树的后序遍历&#xff0c;请你构造并返回这颗 二叉树 。 示例 1: 输入&#xff1a;inorder [9,3,15,20,7…...

rm视觉学习1-自瞄部分

首先先感谢中南大学的开源&#xff0c;提供了很全面的思路&#xff0c;减少了很多基础性的开发研究 我看的阅读的是中南大学FYT战队开源视觉代码 链接&#xff1a;https://github.com/CSU-FYT-Vision/FYT2024_vision.git 1.框架&#xff1a; 代码框架结构&#xff1a;readme有…...

【java面试】微服务篇

【java面试】微服务篇 一、总体框架二、Springcloud&#xff08;一&#xff09;Springcloud五大组件&#xff08;二&#xff09;服务注册和发现1、Eureka2、Nacos &#xff08;三&#xff09;负载均衡1、Ribbon负载均衡流程2、Ribbon负载均衡策略3、自定义负载均衡策略4、总结 …...

RushDB开源程序 是现代应用程序和 AI 的即时数据库。建立在 Neo4j 之上

一、软件介绍 文末提供程序和源码下载 RushDB 改变了您处理图形数据的方式 — 不需要 Schema&#xff0c;不需要复杂的查询&#xff0c;只需推送数据即可。 二、Key Features ✨ 主要特点 Instant Setup: Be productive in seconds, not days 即时设置 &#xff1a;在几秒钟…...