当前位置: 首页 > news >正文

JSONNode树形解析或流式解析

哈喽,大家好,我是木头左!

什么是JSONNode?

JSONNode是一个用于处理JSON数据的数据结构,它提供了一种简单、灵活、高效的方式来操作JSON数据。JSONNode可以看作是一个树形结构,其中每个节点都可以包含一个值和一个子节点列表。通过遍历这个树形结构,可以方便地访问和修改JSON数据。

JSONNode树形解析

树形解析是一种将JSON数据转换为树形结构的方法。在这种方法中,首先将JSON数据转换为一个根节点,然后递归地将每个子节点添加到父节点的子节点列表中。这样,就可以通过遍历树形结构来访问和修改JSON数据。

以下是一个简单的树形解析示例:

public static void parseJson(JSONNode root) {if (root.isObject()) {for (String key : root.fieldNames()) {JSONNode child = root.get(key);if (child.isObject()) {parseJson(child);} else if (child.isArray()) {for (int i = 0; i < child.size(); i++) {parseJson(child.get(i));}} else {System.out.println("Key: " + key + ", Value: " + child);}}} else if (root.isArray()) {for (int i = 0; i < root.size(); i++) {parseJson(root.get(i));}} else {System.out.println("Value: " + root);}
}

在这个示例中,首先检查根节点是否是一个对象。如果是,遍历它的所有字段,并递归地解析每个子节点。如果当前子节点是一个对象,继续递归;如果它是一个数组,遍历数组并递归地解析每个元素;否则,打印出键和值。如果根节点是一个数组,遍历数组并递归地解析每个元素;否则,打印出值。

JSONNode流式解析

流式解析是一种将JSON数据转换为流式结构的方法。在这种方法中,不需要一次性将整个JSON数据加载到内存中,而是逐个处理JSON数据的每个元素。这样,可以更高效地处理大型JSON数据。

以下是一个简单的流式解析示例:

public static void parseJsonStream(InputStream inputStream) throws IOException {BufferedReader reader = new BufferedReader(new InputStreamReader(inputStream));String line;while ((line = reader.readLine()) != null) {// 在这里处理每一行JSON数据,例如将其解析为一个JSONNode对象}
}

在这个示例中,使用BufferedReader从输入流中读取每一行JSON数据。然后,可以将每一行JSON数据解析为一个JSONNode对象,或者直接对其进行处理。这样,就可以逐个处理JSON数据的每个元素,而不需要将整个JSON数据加载到内存中。

JSONNode树形解析与流式解析的比较

JSONNode树形解析和流式解析各有优缺点。下面简要比较一下这两种方法:

优点
  1. 树形解析:树形解析可以让更方便地访问和修改JSON数据。通过遍历树形结构,可以很容易地找到任何节点及其子节点。此外,树形解析还可以让更容易地实现一些复杂的操作,例如查找、排序等。
  2. 流式解析:流式解析可以让更高效地处理大型JSON数据。由于不需要一次性将整个JSON数据加载到内存中,因此流式解析可以节省大量内存资源。此外,流式解析还可以让更容易地处理实时生成的JSON数据。
缺点
  1. 树形解析:树形解析的缺点是需要将整个JSON数据加载到内存中。对于大型JSON数据,这可能会导致内存不足的问题。此外,树形解析还需要消耗一定的CPU资源来构建和维护树形结构。
  2. 流式解析:流式解析的缺点是处理起来相对复杂。由于需要逐个处理JSON数据的每个元素,因此可能需要编写更多的代码来实现相同的功能。此外,流式解析可能无法提供像树形解析那样直观的访问和修改JSON数据的方式。

JSONNode树形解析与流式解析的应用场景

根据不同的应用场景,可以选择合适的JSONNode树形解析或流式解析方法。以下是一些常见的应用场景:

  1. 需要对JSON数据进行复杂操作的场景:在这些场景中,需要对JSON数据进行复杂的操作,例如查找、排序等。这时,树形解析可能是更好的选择,因为它可以让更方便地访问和修改JSON数据。
  2. 需要处理大型JSON数据的场景:在这些场景中,需要处理大型JSON数据,但内存资源有限。这时,流式解析可能是更好的选择,因为它可以让更高效地处理大型JSON数据,而不需要将整个JSON数据加载到内存中。
  3. 需要实时处理JSON数据的场景:在这些场景中,需要实时处理生成的JSON数据。这时,流式解析可能是更好的选择,因为它可以让更容易地处理实时生成的JSON数据。
  4. 需要简化代码的场景:在这些场景中,希望简化代码的编写和维护。这时,可以根据具体需求选择合适的方法。如果树形解析可以使代码更简洁,那么可以选择树形解析;如果流式解析可以使代码更简洁,那么可以选择流式解析。

我是木头左,感谢各位童鞋的点赞、收藏,我们下期更精彩!

相关文章:

JSONNode树形解析或流式解析

哈喽&#xff0c;大家好&#xff0c;我是木头左&#xff01; 什么是JSONNode&#xff1f; JSONNode是一个用于处理JSON数据的数据结构&#xff0c;它提供了一种简单、灵活、高效的方式来操作JSON数据。JSONNode可以看作是一个树形结构&#xff0c;其中每个节点都可以包含一个值…...

自制迷宫游戏 c++

竞赛的同时也不能忘记娱乐&#xff0c;劳逸结合&#xff0c;我们自研了迷宫游戏,只能在DEV C 运行哦 #include<bits/stdc.h> #include<iomanip> #include<iostream> #include<cstdlib> #include<ctime> #include<conio.h> #include<win…...

基于复旦微JFMQL100TAI的全国产化FPGA+AI人工智能异构计算平台,兼容XC7Z045-2FFG900I

基于上海复旦微电子FMQL45T900的全国产化ARM核心板。该核心板将复旦微的FMQL45T900&#xff08;与XILINX的XC7Z045-2FFG900I兼容&#xff09;的最小系统集成在了一个87*117mm的核心板上&#xff0c;可以作为一个核心模块&#xff0c;进行功能性扩展&#xff0c;能够快速的搭建起…...

【数学建模】技术革新——Lingo的使用超详解

目录 基础知识 1. 变量声明 示例 2. 常量声明 语法格式 示例 3. 目标函数 语法格式 示例 4. 约束条件 语法格式 示例 5. 完整的Lingo模型示例 示例 解释 6. 整数变量声明 语法格式 示例 7. 非线性规划 示例 8. 多目标优化 语法格式 示例 9. 数据输入与…...

LLM-阿里 DashVector + langchain self-querying retriever 优化 RAG 实践【Query 优化】

文章目录 前言self querying 简介代码实现总结 前言 现在比较流行的 RAG 检索就是通过大模型 embedding 算法将数据嵌入向量数据库中&#xff0c;然后在将用户的查询向量化&#xff0c;从向量数据库中召回相似性数据&#xff0c;构造成 context template, 放到 LLM 中进行查询…...

【python】PyQt5的窗口界面的各种交互逻辑实现,轻松掌控图形化界面程序

✨✨ 欢迎大家来到景天科技苑✨✨ &#x1f388;&#x1f388; 养成好习惯&#xff0c;先赞后看哦~&#x1f388;&#x1f388; &#x1f3c6; 作者简介&#xff1a;景天科技苑 &#x1f3c6;《头衔》&#xff1a;大厂架构师&#xff0c;华为云开发者社区专家博主&#xff0c;…...

DockerCompose介绍,安装,使用

DockerCompose 1、Compose介绍 将单机服务-通过Dockerfile 构建为镜像 -docker run 成为一个服务 user 8080 net 7000 pay 8181 admin 5000 监控 .... docker run 单机版、一个个容器启动和停止问题&#xff1a; 前面我们使用Docker的时候&#xff0c;定义 Dockerfil…...

N叉树的前序遍历

Problem: 589. N 叉树的前序遍历 文章目录 思路解题过程Code 思路 前序遍历&#xff0c;遇到空节点返回 解题过程 对每个节点进行遍历 Code /* // Definition for a Node. class Node { public:int val;vector<Node*> children;Node() {}Node(int _val) {val _val;}Nod…...

Linux C++ 054-设计模式之外观模式

Linux C 054-设计模式之外观模式 本节关键字&#xff1a;Linux、C、设计模式、外观模式 相关库函数&#xff1a; 概念 外观模式&#xff08;Facade&#xff09;&#xff0c;亦称“过程模式”。主张按照描述和判断资料来评价课程&#xff0c;关键的活动是在课程实施的全过程中…...

Linux - 冯-诺依曼体系结构、初始操作系统

目录 冯•诺依曼体系 结构推导 内存提高效率的方法 数据的流动过程 体系结构相关知识 初始操作系统 定位 设计目的 操作系统之上之下分别有什么 管理精髓&#xff1a;先描述&#xff0c;再组织 冯•诺依曼体系 结构推导 计算机基本工作流程图大致如下&#xff1a; 输入设备&a…...

成功适配!极验设备指纹HarmonyOS 鸿蒙版官方下载

近日&#xff0c;华为开发者大会&#xff08;HDC 2024&#xff09;在东莞召开。在大会开幕日的首场主题演讲中&#xff0c;华为宣布当前已有TOP5000应用成为鸿蒙原生应用&#xff0c;350&#xff0b;SDK已适配HarmonyOS NEXT版本。其中&#xff0c;极验作为其重要伙伴&#xff…...

【C++】字符串学习 知识点+代码记录

一.知识点总结 1. C风格字符串&#xff08;字符数组&#xff09; 字符数组存储字符串&#xff1a;C风格的字符串实际上是字符数组&#xff0c;以空字符\0作为结尾标志。字符串字面量与字符数组&#xff1a;字符串字面量如"Hello"被编译器视为const char*类型&#…...

尝试理解docker网络通信逻辑

一、docker是什么 Docker本质是一个进程,宿主机通过namespace隔离机制提供进程需要运行基础环境&#xff0c;并且通过Cgroup限制进程调用资源。Docker的隔离机制包括 network隔离&#xff0c;此次主要探讨网络隔离mount隔离hostname隔离user隔离pid隔离进程通信隔离 二、doc…...

数据仓库哈哈

数据仓库 基本概念数据库&#xff08;database&#xff09;和数据仓库&#xff08;Data Warehouse&#xff09;的异同 整体架构分层架构方法论ER模型&#xff08;建模理论&#xff09;维度模型 何为分层第一层&#xff1a;数据源&#xff08;ODS ER模型&#xff09;设计要点日志…...

K最近邻(K-Nearest Neighbors, KNN)

K最近邻&#xff08;K-Nearest Neighbors, KNN&#xff09;理论知识推导 KNN算法是一个简单且直观的分类和回归方法&#xff0c;其基本思想是&#xff1a;给定一个样本点&#xff0c;找到训练集中与其最近的K个样本点&#xff0c;根据这些样本点的类别&#xff08;分类问题&am…...

深度学习损失计算

文章目录 深度学习损失计算1.如何计算当前epoch的损失&#xff1f;2.为什么要计算样本平均损失&#xff0c;而不是计算批次平均损失&#xff1f; 深度学习损失计算 1.如何计算当前epoch的损失&#xff1f; 深度学习中的损失计算&#xff0c;通常为数据集的平均损失&#xff0…...

论文翻译:通过云计算对联网多智能体系统进行预测控制

通过云计算对联网多智能体系统进行预测控制 文章目录 通过云计算对联网多智能体系统进行预测控制摘要前言通过云计算实现联网的多智能体控制系统网络化多智能体系统的云预测控制器设计云预测控制系统的稳定性和一致性分析例子结论 摘要 本文研究了基于云计算的网络化多智能体预…...

Java核心(五)多线程

线程并行的逻辑 一个线程问题 起手先来看一个线程问题&#xff1a; public class NumberExample {private int cnt 0;public void add() {cnt;}public int get() {return cnt;} }public static void main(String[] args) throws InterruptedException {final int threadSiz…...

IDEA快速生成项目树形结构图

下图用的IDEA工具&#xff0c;但我觉得WebStorm 应该也可以 文章目录 进入项目根目录下&#xff0c;进入cmd输入如下指令&#xff1a; 只有文件夹 tree . > list.txt 包括文件夹和文件 tree /f . > list.txt 还可以为相关包路径加上注释...

【CPO-TCN-BiGRU-Attention回归预测】基于冠豪猪算法CPO优化时间卷积双向门控循环单元融合注意力机制

基于冠豪猪算法CPO&#xff08;Correlation-Preservation Optimization&#xff09;优化的时间卷积双向门控循环单元&#xff08;Bidirectional Gated Recurrent Unit&#xff0c;BiGRU&#xff09;融合注意力机制&#xff08;Attention&#xff09;的回归预测需要详细的实现和…...

Ubuntu系统下交叉编译openssl

一、参考资料 OpenSSL&&libcurl库的交叉编译 - hesetone - 博客园 二、准备工作 1. 编译环境 宿主机&#xff1a;Ubuntu 20.04.6 LTSHost&#xff1a;ARM32位交叉编译器&#xff1a;arm-linux-gnueabihf-gcc-11.1.0 2. 设置交叉编译工具链 在交叉编译之前&#x…...

逻辑回归:给不确定性划界的分类大师

想象你是一名医生。面对患者的检查报告&#xff08;肿瘤大小、血液指标&#xff09;&#xff0c;你需要做出一个**决定性判断**&#xff1a;恶性还是良性&#xff1f;这种“非黑即白”的抉择&#xff0c;正是**逻辑回归&#xff08;Logistic Regression&#xff09;** 的战场&a…...

visual studio 2022更改主题为深色

visual studio 2022更改主题为深色 点击visual studio 上方的 工具-> 选项 在选项窗口中&#xff0c;选择 环境 -> 常规 &#xff0c;将其中的颜色主题改成深色 点击确定&#xff0c;更改完成...

iPhone密码忘记了办?iPhoneUnlocker,iPhone解锁工具Aiseesoft iPhone Unlocker 高级注册版​分享

平时用 iPhone 的时候&#xff0c;难免会碰到解锁的麻烦事。比如密码忘了、人脸识别 / 指纹识别突然不灵&#xff0c;或者买了二手 iPhone 却被原来的 iCloud 账号锁住&#xff0c;这时候就需要靠谱的解锁工具来帮忙了。Aiseesoft iPhone Unlocker 就是专门解决这些问题的软件&…...

Opencv中的addweighted函数

一.addweighted函数作用 addweighted&#xff08;&#xff09;是OpenCV库中用于图像处理的函数&#xff0c;主要功能是将两个输入图像&#xff08;尺寸和类型相同&#xff09;按照指定的权重进行加权叠加&#xff08;图像融合&#xff09;&#xff0c;并添加一个标量值&#x…...

【磁盘】每天掌握一个Linux命令 - iostat

目录 【磁盘】每天掌握一个Linux命令 - iostat工具概述安装方式核心功能基础用法进阶操作实战案例面试题场景生产场景 注意事项 【磁盘】每天掌握一个Linux命令 - iostat 工具概述 iostat&#xff08;I/O Statistics&#xff09;是Linux系统下用于监视系统输入输出设备和CPU使…...

基于Uniapp开发HarmonyOS 5.0旅游应用技术实践

一、技术选型背景 1.跨平台优势 Uniapp采用Vue.js框架&#xff0c;支持"一次开发&#xff0c;多端部署"&#xff0c;可同步生成HarmonyOS、iOS、Android等多平台应用。 2.鸿蒙特性融合 HarmonyOS 5.0的分布式能力与原子化服务&#xff0c;为旅游应用带来&#xf…...

【项目实战】通过多模态+LangGraph实现PPT生成助手

PPT自动生成系统 基于LangGraph的PPT自动生成系统&#xff0c;可以将Markdown文档自动转换为PPT演示文稿。 功能特点 Markdown解析&#xff1a;自动解析Markdown文档结构PPT模板分析&#xff1a;分析PPT模板的布局和风格智能布局决策&#xff1a;匹配内容与合适的PPT布局自动…...

Qt Http Server模块功能及架构

Qt Http Server 是 Qt 6.0 中引入的一个新模块&#xff0c;它提供了一个轻量级的 HTTP 服务器实现&#xff0c;主要用于构建基于 HTTP 的应用程序和服务。 功能介绍&#xff1a; 主要功能 HTTP服务器功能&#xff1a; 支持 HTTP/1.1 协议 简单的请求/响应处理模型 支持 GET…...

12.找到字符串中所有字母异位词

&#x1f9e0; 题目解析 题目描述&#xff1a; 给定两个字符串 s 和 p&#xff0c;找出 s 中所有 p 的字母异位词的起始索引。 返回的答案以数组形式表示。 字母异位词定义&#xff1a; 若两个字符串包含的字符种类和出现次数完全相同&#xff0c;顺序无所谓&#xff0c;则互为…...