当前位置: 首页 > news >正文

基于python的图像去水印

1 代码

import cv2
import numpy as npdef remove_watermark(image_path, output_path):# 读取图片image = cv2.imread(image_path)# 转换为灰度图gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)# 使用中值滤波去除噪声median_filtered = cv2.medianBlur(gray, 5)# 计算图像的梯度laplacian = cv2.Laplacian(median_filtered, cv2.CV_64F)# 将梯度图像转换为8位无符号整数laplacian_8u = np.uint8(np.absolute(laplacian))# 使用阈值操作找到潜在的水印区域_, thresholded = cv2.threshold(laplacian_8u, 30, 255, cv2.THRESH_BINARY)# 对阈值图像进行形态学操作,填充孔洞并平滑边缘kernel = np.ones((3, 3), np.uint8)closing = cv2.morphologyEx(thresholded, cv2.MORPH_CLOSE, kernel, iterations=2)# 创建一个掩码,将潜在的水印区域设置为白色mask = np.zeros_like(image)mask[closing == 255] = [255, 255, 255]# 将掩码转换为单通道图像mask_gray = cv2.cvtColor(mask, cv2.COLOR_BGR2GRAY)# 使用掩码去除水印result = cv2.inpaint(image, mask_gray, 3, cv2.INPAINT_TELEA)# 保存去水印后的图片cv2.imwrite(output_path, result)remove_watermark('input.jpg', 'output.jpg')

2 去水印效果

图2-1 去水印前后对比

        从图2-1可以看出并没有完美去除水印,这是由水印与背景颜色接近造成的,后面我会用深度学习的方法探索一番。

相关文章:

基于python的图像去水印

1 代码 import cv2 import numpy as npdef remove_watermark(image_path, output_path):# 读取图片image cv2.imread(image_path)# 转换为灰度图gray cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)# 使用中值滤波去除噪声median_filtered cv2.medianBlur(gray, 5)# 计算图像的梯…...

Linux下Supervisor的安装与配置

软件工程中,守护进程是非常行之有效的方案。能够让我们的一些指令在崩溃之后可以自我重新启动,从而保障业务上的持续使用。 这里就从0开始教大家安装Supervisor。 一,下载安装 安装有好多种方法,直接下载安装包安装,或者yum安装或者pip安装都可以。这次我们选择的是pip…...

使用Pandas读取Excel文件将特定列转成str格式方法汇总

文章目录 读取Excel文件并确保列为字符串类型使用 dtype 参数使用 converters 参数 读取Excel文件的正确拼写示例:读取Excel文件并过滤包含特定值的行详细解释 读取Excel文件并确保列为字符串类型 正确的方法是使用 pd.read_excel 函数,并指定 dtype 或…...

FPGA CFGBVS 管脚接法

说明 新设计了1个KU040 FPGA板子,回来之后接上JTAG FPGA不识别。做如下检查: 1、电源测试点均正常; 2、查看贴片是否有漏焊,检查无异常,设计上NC的才NC; 3、反复检查JTAG接线是否异常,贴片是…...

快速排序及归并排序的实现与排序的稳定性

目录 快速排序 一. 快速排序递归的实现方法 1. 左右指针法 步骤思路 为什么要让end先走? 2. 挖坑法 步骤思路 3. 前后指针法 步骤思路 二. 快速排序的时间和空间复杂度 1. 时间复杂度 2. 空间复杂度 三. 快速排序的优化方法 1. 三数取中优化 2. 小区…...

【系统架构设计】数据库系统(一)

数据库系统(一) 数据库模式与范式数据库的结构与模式数据模型关系代数数据的规范化反规范化 数据库设计事务管理备份与恢复分布式数据库系统数据仓库数据挖掘NoSQL大数据 数据库模式与范式 数据库的结构与模式 数据库技术中采用分级的方法将数据库的结…...

泛微e-cology WorkflowServiceXml SQL注入漏洞(POC)

漏洞描述: 泛微 e-cology 是泛微公司开发的协同管理应用平台。泛微 e-cology v10.64.1的/services/接口默认对内网暴露,用于服务调用,未经身份认证的攻击者可向 /services/WorkflowServiceXml 接口发送恶意的SOAP请求进行SQL注入,…...

<Rust><GUI>rust语言GUI库tauri体验:前、后端结合创建一个窗口并修改其样式

前言 本文是rust语言下的GUI库:tauri来创建一个窗口的简单演示,主要说明一下,使用tauri这个库如何创建GUI以及如何添加部件、如何编写逻辑、如何修改风格等,所以,这也是一个专栏,将包括tauri库的多个方面。…...

OBD诊断(ISO15031) 09服务

文章目录 功能简介ISO 9141-2、ISO 14230-4和SAE J1850的诊断服务定义1、请求车辆信息请求消息(读取支持的INFOTYPE)2、请求车辆信息响应消息(报告支持INFOTYPE)3、请求车辆信息请求消息(读取INFOTYPE值)4、请求车辆信息响应消息&…...

客户端与服务端之间的通信连接

目录 那什么是Socket? 什么是ServerSocket? 代码展示: 代码解析: 补充: 输入流(InputStream): 输出流(OutputStream): BufferedReader 是如何提高读取效率的&a…...

Font Awesome 图表图标

Font Awesome 图表图标 Font Awesome 是一个广泛使用的图标库,它提供了大量的图标,可以轻松地用于网页设计和开发中。在本文中,我们将重点介绍 Font Awesome 中的图表图标,探讨它们的特点、使用方法,并展示一些实际的…...

React Native 自定义 Hook 获取组件位置和大小

在 React Native 中自定义 Hook useLayout 获取 View、Pressable 等组件的位置和大小的信息 import {useState, useCallback} from react import {LayoutChangeEvent, LayoutRectangle} from react-nativeexport function useLayout() {const [layout, setLayout] useState&l…...

如何在SpringCloud中使用Kafka Streams实现实时数据处理

使用Kafka Streams在Spring Cloud中实现实时数据处理可以帮助我们构建可扩展、高性能的实时数据处理应用。Kafka Streams是一个基于Kafka的流处理库,它可以用来处理流式数据,进行流式计算和转换操作。 下面将介绍如何在Spring Cloud中使用Kafka Streams实…...

InterSystems IRIS使用python pyodbc连接 windows环境,odbc驱动安装,DSN配置,数据源配置

一、创建的数据库和数据 SELECT 1SELECT $ZVERSIONCREATE TABLE MyApp.Person ( ID INT PRIMARY KEY, Name VARCHAR(100) NOT NULL, Age INT, Gender CHAR(1) );CREATE TABLE MyApp.Person2 ( ID INT PRIMARY KEY, Name VARCHAR(100) NOT NULL, Age INT, Gender CHA…...

JVM:运行时数据区

文章目录 一、总览二、程序计数器1、介绍2、程序计数器在运行中会出现内存溢出吗? 三、栈1、介绍2、栈帧的组成部分(1)局部变量表(2)操作数栈(3)帧数据(3)栈内存溢出&…...

spring-boot2.x整合Kafka步骤

1.pom依赖添加 <properties><java.version>1.8</java.version><project.build.sourceEncoding>UTF-8</project.build.sourceEncoding><maven.compiler.source>1.8</maven.compiler.source><maven.compiler.target>1.8</ma…...

信创学习笔记(四),信创之数据库DB思维导图

创作不易 只因热爱!! 热衷分享&#xff0c;一起成长! “你的鼓励就是我努力付出的动力” 一. 信创学习回顾 1.信创内容 信创内容思维导图 2.信创之CPU芯片架构 信创之CPU芯片架构思维导图 3.信创之操作系统OS 信创之操作系统OS思维导图 二. 信创之国产数据库DB思维导图 …...

SCP 使用教程

SCP&#xff08;Secure Copy Protocol&#xff09;是一种通过加密的方式在本地主机和远程主机之间安全地传输文件的协议。它是基于SSH协议的扩展&#xff0c;允许用户在不同主机之间进行文件复制和传输&#xff0c;是Linux和Unix系统中常用的工具之一。本教程将详细介绍SCP的基…...

python自动化之用flask校验接口token(把token作为参数)

用到的库&#xff1a;flask 实现效果: 写一个接口&#xff0c;需要token正确才能登录 代码&#xff1a; # 导包 from flask import Flask,request,jsonify,json # 创建一个服务 appFlask(__name__) # post请求&#xff0c;路径&#xff1a;/query app.route(/query, met…...

旗晟巡检机器人的应用场景有哪些?

巡检机器人作为现代科技的杰出成果&#xff0c;已广泛应用于各个关键场景。从危险的工业现场到至关重要的基础设施&#xff0c;它们的身影无处不在。它们以精准、高效、不知疲倦的特性&#xff0c;担当起保障生产、守护安全的重任&#xff0c;为行业发展注入新的活力。那么&…...

蓝桥杯 2024 15届国赛 A组 儿童节快乐

P10576 [蓝桥杯 2024 国 A] 儿童节快乐 题目描述 五彩斑斓的气球在蓝天下悠然飘荡&#xff0c;轻快的音乐在耳边持续回荡&#xff0c;小朋友们手牵着手一同畅快欢笑。在这样一片安乐祥和的氛围下&#xff0c;六一来了。 今天是六一儿童节&#xff0c;小蓝老师为了让大家在节…...

django filter 统计数量 按属性去重

在Django中&#xff0c;如果你想要根据某个属性对查询集进行去重并统计数量&#xff0c;你可以使用values()方法配合annotate()方法来实现。这里有两种常见的方法来完成这个需求&#xff1a; 方法1&#xff1a;使用annotate()和Count 假设你有一个模型Item&#xff0c;并且你想…...

JVM暂停(Stop-The-World,STW)的原因分类及对应排查方案

JVM暂停(Stop-The-World,STW)的完整原因分类及对应排查方案,结合JVM运行机制和常见故障场景整理而成: 一、GC相关暂停​​ 1. ​​安全点(Safepoint)阻塞​​ ​​现象​​:JVM暂停但无GC日志,日志显示No GCs detected。​​原因​​:JVM等待所有线程进入安全点(如…...

C# 求圆面积的程序(Program to find area of a circle)

给定半径r&#xff0c;求圆的面积。圆的面积应精确到小数点后5位。 例子&#xff1a; 输入&#xff1a;r 5 输出&#xff1a;78.53982 解释&#xff1a;由于面积 PI * r * r 3.14159265358979323846 * 5 * 5 78.53982&#xff0c;因为我们只保留小数点后 5 位数字。 输…...

CSS设置元素的宽度根据其内容自动调整

width: fit-content 是 CSS 中的一个属性值&#xff0c;用于设置元素的宽度根据其内容自动调整&#xff0c;确保宽度刚好容纳内容而不会超出。 效果对比 默认情况&#xff08;width: auto&#xff09;&#xff1a; 块级元素&#xff08;如 <div>&#xff09;会占满父容器…...

人工智能(大型语言模型 LLMs)对不同学科的影响以及由此产生的新学习方式

今天是关于AI如何在教学中增强学生的学习体验&#xff0c;我把重要信息标红了。人文学科的价值被低估了 ⬇️ 转型与必要性 人工智能正在深刻地改变教育&#xff0c;这并非炒作&#xff0c;而是已经发生的巨大变革。教育机构和教育者不能忽视它&#xff0c;试图简单地禁止学生使…...

SQL慢可能是触发了ring buffer

简介 最近在进行 postgresql 性能排查的时候,发现 PG 在某一个时间并行执行的 SQL 变得特别慢。最后通过监控监观察到并行发起得时间 buffers_alloc 就急速上升,且低水位伴随在整个慢 SQL,一直是 buferIO 的等待事件,此时也没有其他会话的争抢。SQL 虽然不是高效 SQL ,但…...

论文阅读笔记——Muffin: Testing Deep Learning Libraries via Neural Architecture Fuzzing

Muffin 论文 现有方法 CRADLE 和 LEMON&#xff0c;依赖模型推理阶段输出进行差分测试&#xff0c;但在训练阶段是不可行的&#xff0c;因为训练阶段直到最后才有固定输出&#xff0c;中间过程是不断变化的。API 库覆盖低&#xff0c;因为各个 API 都是在各种具体场景下使用。…...

【Veristand】Veristand环境安装教程-Linux RT / Windows

首先声明&#xff0c;此教程是针对Simulink编译模型并导入Veristand中编写的&#xff0c;同时需要注意的是老用户编译可能用的是Veristand Model Framework&#xff0c;那个是历史版本&#xff0c;且NI不会再维护&#xff0c;新版本编译支持为VeriStand Model Generation Suppo…...

GraphQL 实战篇:Apollo Client 配置与缓存

GraphQL 实战篇&#xff1a;Apollo Client 配置与缓存 上一篇&#xff1a;GraphQL 入门篇&#xff1a;基础查询语法 依旧和上一篇的笔记一样&#xff0c;主实操&#xff0c;没啥过多的细节讲解&#xff0c;代码具体在&#xff1a; https://github.com/GoldenaArcher/graphql…...