深层神经网络示例
维度说明:
A[L]、Z[L]:(本层神经元个数、样本数)
W[L]:(本层神经元个数、上层神经元个数)
b[L]:(本层神经元个数、1)
dZ[L]:dA[L] * g’A(Z[L])
dZ[L]:(本层神经元个数、样本数)
dw = dL/dz * dz/dw = dz*x(链式法则)
db = dz(链式法则)
dW[L]:(本层神经元个数、上层神经元个数)
dA[L]:(本层神经元个数、样本数)
da = dz * w
dA[L-1] = W[L].T dZ[L],注意这里没有除以神经元个数,得到平均da。比如结果的第一个元素是多个dw1 * dz + dw1 * dz+ …dw1 * dz(神经元个数)的累加和
输出层采用sigmoid,隐藏层采用tanh
import numpy as np
# 设置一些画图相关的参数
import matplotlib.pyplot as pltplt.rcParams['figure.figsize'] = (5.0, 4.0)
plt.rcParams['image.interpolation'] = 'nearest'
plt.rcParams['image.cmap'] = 'gray'
from project_03.utils.dnn_utils import *
from project_03.utils.testCases import *def load_dataset():train_dataset = h5py.File('../deep_learn_01/project_01/datasets/train_catvnoncat.h5', 'r')train_set_x_orig = np.array(train_dataset['train_set_x'][:])train_set_y_orig = np.array(train_dataset["train_set_y"][:]) # 加载训练数据test_dataset = h5py.File('../deep_learn_01/project_01/datasets/test_catvnoncat.h5', "r") # 加载测试数据test_set_x_orig = np.array(test_dataset["test_set_x"][:])test_set_y_orig = np.array(test_dataset["test_set_y"][:])classes = np.array(test_dataset["list_classes"][:]) # 加载标签类别数据,这里的类别只有两种,1代表有猫,0代表无猫train_set_y_orig = train_set_y_orig.reshape((1, train_set_y_orig.shape[0])) # 把数组的维度从(209,)变成(1, 209),这样好方便后面进行计算[1 1 0 1] -> [[1][1][0][1]]test_set_y_orig = test_set_y_orig.reshape((1, test_set_y_orig.shape[0])) # 从(50,)变成(1, 50)return train_set_x_orig, train_set_y_orig, test_set_x_orig, test_set_y_orig, classesdef sigmoid(Z):A = 1 / (1 + np.exp(-Z))return Adef relu(Z):A = np.maximum(0, Z)assert (A.shape == Z.shape)return Adef initialize_parameters_deep(layers_dims):""":param layers_dims: list of neuron numexample: layer_dims=[5,4,3],表示输入层有5个神经元,第一层有4个,最后二层有3个神经元(还有输出层的1个神经元):return: parameters: the w,b of each layer"""np.random.seed(1)parameters = {}L = len(layers_dims)for l in range(1, L):parameters[f"W{l}"] = np.random.randn(layers_dims[l], layers_dims[l - 1]) / np.sqrt(layers_dims[l - 1])parameters[f"b{l}"] = np.zeros((layers_dims[l], 1))assert (parameters[f"W{l}"].shape == (layers_dims[l], layers_dims[l - 1]))assert (parameters[f"b{l}"].shape == (layers_dims[l], 1))return parameters # W1,b1,W2,b2def linear_forward(A, W, b):"""线性前向传播"""Z = np.dot(W, A) + bassert (Z.shape == (W.shape[0], A.shape[1]))return Zdef linear_activation_forward(A_prev, W, b, activation):""":param A_prev: 上一层得到的A,输入到本层来计算本层的Z和A,第一层时A_prev就是输入X:param W:本层的w:param b:本层的b:param activation: 激活函数"""Z = linear_forward(A_prev, W, b)if activation == "sigmoid":A = sigmoid(Z)elif activation == "relu":A = relu(Z)else:assert (1 != 1), "there is no support activation!"assert (A.shape == (W.shape[0], A_prev.shape[1]))linear_cache = (A_prev, W, b)cache = (linear_cache, Z)return A, cachedef L_model_forward(X, parameters):"""前向传播:param X: 输入特征:param parameters: 每一层的初始化w,b"""caches = []A = XL = len(parameters) // 2 # W1,b1,W2,b2, L=2for l in range(1, L):A_prev = AA, cache = linear_activation_forward(A_prev, parameters[f"W{l}"], parameters[f"b{l}"], 'relu')caches.append(cache) # A1,(X,W1,b1,Z1)AL, cache = linear_activation_forward(A, parameters[f"W{L}"], parameters[f"b{L}"], activation="sigmoid")caches.append(cache) # A2,(A1,W2,b2,Z2)assert (AL.shape == (1, X.shape[1]))return AL, cachesdef compute_cost(AL, Y):m = Y.shape[1]logprobs = np.multiply(Y, np.log(AL)) + np.multiply((1 - Y), np.log(1 - AL))cost = (-1 / m) * np.sum(logprobs)assert (cost.shape == ())return costdef linear_backward(dZ, cache):""":param dZ: 后面一层的dZ:param cache: 前向传播保存下来的本层的变量:return 本层的dw、db,前一层da"""A_prew, W, b = cachem = A_prew.shape[1]dW = np.dot(dZ, A_prew.T) / mdb = np.sum(dZ, axis=1, keepdims=True) / mdA_prev = np.dot(W.T, dZ)assert (dA_prev.shape == A_prew.shape)assert (dW.shape == W.shape)assert (db.shape == b.shape)return dA_prev, dW, dbdef linear_activation_backward(dA, cache, activation):""":param dA: 本层的dA:param cache: 前向传播保存的本层的变量:param activation: 激活函数:"sigmoid"或"relu":return 本层的dw、db,前一次的dA"""linear_cache, Z = cache# 首先计算本层的dZif activation == 'relu':dZ = 1 * dAdZ[Z <= 0] = 0elif activation == 'sigmoid':A = sigmoid(Z)dZ = dA * A * (1 - A)else:assert (1 != 1), "there is no support activation!"assert (dZ.shape == Z.shape)# 这里我们又顺带根据本层的dZ算出本层的dW和db以及前一层的dAdA_prev, dW, db = linear_backward(dZ, linear_cache)return dA_prev, dW, dbdef L_model_backward(AL, Y, caches):""":param AL: 最后一层A:param Y: 真实标签:param caches: 前向传播的保存的每一层的相关变量 (A_prev, W, b),Z"""grads = {}L = len(caches) # 2Y = Y.reshape(AL.shape) # 让真实标签与预测标签的维度一致dAL = -np.divide(Y, AL) + np.divide(1 - Y, 1 - AL) # dA2# 计算最后一层的dW和db,由成本函数来计算current_cache = caches[-1] # 1,2grads[f"dA{L - 1}"], grads[f"dW{L}"], grads[f"db{L}"] = linear_activation_backward(dAL, current_cache,"sigmoid") # dA1, dW2, db2# 计算前L-1层的dw和db,因为最后一层用的是sigmoid,for c in reversed(range(1, L)): # reversed(range(1,L))的结果是L-1,L-2...1。是不包括L的。第0层是输入层,不必计算。 caches[0,1] L = 2 1,1# c表示当前层grads[f"dA{c - 1}"], grads[f"dW{c}"], grads[f"db{c}"] = linear_activation_backward(grads[f"dA{c}"],caches[c - 1],"relu")return gradsdef update_parameters(parameters, grads, learning_rate):L = len(parameters) // 2for l in range(1, L + 1):parameters[f"W{l}"] = parameters[f"W{l}"] - grads[f"dW{l}"] * learning_rateparameters[f"b{l}"] = parameters[f"b{l}"] - grads[f"db{l}"] * learning_ratereturn parametersdef dnn_model(X, Y, layers_dim, learning_rate=0.0075, num_iterations=3000, print_cost=False):np.random.seed(1)costs = []parameters = initialize_parameters_deep(layers_dim)for i in range(0, num_iterations):AL, caches = L_model_forward(X, parameters)cost = compute_cost(AL, Y)grads = L_model_backward(AL, Y, caches)parameters = update_parameters(parameters, grads, learning_rate)if print_cost and i % 100 == 0:print("训练%i次后成本是: %f" % (i, cost))costs.append(cost)# 画出成本曲线图plt.plot(np.squeeze(costs))plt.ylabel('cost')plt.xlabel('iterations (per tens)')plt.title("Learning rate =" + str(learning_rate))plt.show()return parametersdef predict(X, parameters):m = X.shape[1]n = len(parameters) // 2p = np.zeros((1, m))probas, caches = L_model_forward(X, parameters)# 将预测结果转化成0和1的形式,即大于0.5的就是1,否则就是0for i in range(0, probas.shape[1]):if probas[0, i] > 0.5:p[0, i] = 1else:p[0, i] = 0return pif __name__ == "__main__":train_set_x_orig, train_set_y, test_set_x_orig, test_set_y, classes = load_dataset()# 我们要清楚变量的维度,否则后面会出很多问题。下面我把他们的维度打印出来。train_set_x_flatten = train_set_x_orig.reshape(train_set_x_orig.shape[0], -1).Ttest_set_x_flatten = test_set_x_orig.reshape(test_set_x_orig.shape[0], -1).Tprint("train_set_x_flatten shape: " + str(train_set_x_flatten.shape))print("test_set_x_flatten shape: " + str(test_set_x_flatten.shape))train_set_x = train_set_x_flatten / 255test_set_x = test_set_x_flatten / 255layers_dims = [12288, 20, 7, 5, 1]# 根据上面的层次信息来构建一个深度神经网络,并且用之前加载的数据集来训练这个神经网络,得出训练后的参数parameters = dnn_model(train_set_x, train_set_y, layers_dims, num_iterations=2000, print_cost=True)# 对训练数据集进行预测pred_train = predict(train_set_x, parameters)print("预测准确率是: " + str(np.sum((pred_train == train_set_y) / train_set_x.shape[1])))# 对测试数据集进行预测pred_test = predict(test_set_x, parameters)print("预测准确率是: " + str(np.sum((pred_test == test_set_y) / test_set_x.shape[1])))
相关文章:

深层神经网络示例
维度说明: A[L]、Z[L]:(本层神经元个数、样本数) W[L]:(本层神经元个数、上层神经元个数) b[L]:(本层神经元个数、1) dZ[L]:dA[L] * g’A…...
vue中获取剪切板中的内容
目录 1.说明 2.示例 3.总结 1.说明 在系统中的画面或者时外部文件中进行拷贝处理后,在页面中可以获取剪切板的内容。 2.示例 方式①(直接获取) // 异步函数获取剪切板内容 async function getClipboardContent(ev: any) {try {ev.preventDefault()const clip…...

十五、【机器学习】【监督学习】- 神经网络回归
系列文章目录 第一章 【机器学习】初识机器学习 第二章 【机器学习】【监督学习】- 逻辑回归算法 (Logistic Regression) 第三章 【机器学习】【监督学习】- 支持向量机 (SVM) 第四章【机器学习】【监督学习】- K-近邻算法 (K-NN) 第五章【机器学习】【监督学习】- 决策树…...

知识图谱和 LLM:利用Neo4j驾驭大型语言模型(探索真实用例)
这是关于 Neo4j 的 NaLLM 项目的一篇博客文章。这个项目是为了探索、开发和展示这些 LLM 与 Neo4j 结合的实际用途。 2023 年,ChatGPT 等大型语言模型 (LLM) 因其理解和生成类似人类的文本的能力而风靡全球。它们能够适应不同的对话环境、回答各种主题的问题,甚至模拟创意写…...

目标检测入门:4.目标检测中的一阶段模型和两阶段模型
在前面几章里,都只做了目标检测中的目标定位任务,并未做目标分类任务。目标检测作为计算机视觉领域的核心人物之一,旨在从图像中识别出所有感兴趣的目标,并确定它们的类别和位置。现在目标检测以一阶段模型和两阶段模型为代表的。…...

zookeeper+kafka消息队列群集部署
kafka拓扑架构 zookeeper拓扑架构...

[K8S]一、Flink on K8S
Kubernetes | Apache Flink 先编辑好这5个配置文件,然后再直接执行 kubectl create -f ./ kubectl get all kubectl get nodes kubectl get pods kubectl get pod -o wide kubectl get cm -- 获取所有的configmap 配置文件 kubectl logs pod_name -- 查看…...

系统架构设计师教程 第3章 信息系统基础知识-3.1 信息系统概述
系统架构设计师教程 第3章 信息系统基础知识-3.1 信息系统概述 3.1.1 信息系统的定义3.1.1.1 信息系统3.1.1.2 信息化3.1.2 信息系统的发展3.1.2.1 初始阶段3.1.2.2 传播阶段3.1.2.3 控制阶段3.1.2.4 集成阶段3.1.2.5 数据管理阶段3.1.2.6 成熟阶段3.1.3 信息系统的分类3.…...
Gemma的简单理解;Vertex AI的简单理解,与chatGpt区别
目录 Gemma的简单理解 Vertex AI的简单理解 Gemma Vertex AI Gemma Vertex AI和chatcpt区别 一、定义与功能 二、技术特点 三、应用场景 四、获取与部署 Gemma的简单理解 定义与功能: Gemma是谷歌开源的一款大语言模型,它采用了Gemini架构,并提供了20亿(2B)和7…...
Lua 数组
Lua 数组 Lua 是一种轻量级的编程语言,广泛用于游戏开发、脚本编写和其他应用程序。在 Lua 中,数组是一种非常基础和重要的数据结构。本文将详细介绍 Lua 数组的概念、用法和操作方法。 数组的概念 在 Lua 中,数组实际上是一个列表&#x…...
游戏中的敏感词算法初探
在游戏中起名和聊天需要服务器判断是否含有敏感词,从而拒绝或屏蔽敏感词显示,这里枚举一些常用的算法和实际效果。 1.字符串匹配算法 常用的有KMP,核心就是预处理出next数组,也就是失配信息,时间复杂度在O(mn) 。还有个…...
使用Java和Apache Kafka Streams实现实时流处理应用
使用Java和Apache Kafka Streams实现实时流处理应用 大家好,我是微赚淘客系统3.0的小编,是个冬天不穿秋裤,天冷也要风度的程序猿! 引言 实时流处理已经成为现代应用开发中不可或缺的一部分。Apache Kafka Streams是一个强大的库…...

分享 .NET EF6 查询并返回树形结构数据的 2 个思路和具体实现方法
前言 树形结构是一种很常见的数据结构,类似于现实生活中的树的结构,具有根节点、父子关系和层级结构。 所谓根节点,就是整个树的起始节点。 节点则是树中的元素,每个节点可以有零个或多个子节点,节点按照层级排列&a…...
【柴油机故障诊断】基于斑马优化算法ZOA优化柴油机故障诊断附Matlab代码
% 柴油机故障诊断 - 基于斑马优化算法(Zebra Optimization Algorithm,ZOA)优化Transformer模型 % 代码示例仅为演示用途,实际应用中可能需要根据具体情况进行适当修改 % 初始化参数 maxIterations = 100; % 最大迭代次数 populationSize = 50; % 种群大小 % 斑马优化算法…...

C1W4.Assignment.Naive Machine Translation and LSH
理论课:C1W4.Machine Translation and Document Search 文章目录 1. The word embeddings data for English and French words1.1The dataThe subset of dataLoad two dictionaries 1.2 Generate embedding and transform matricesExercise 1: Translating English…...

智能听诊器:宠物健康监测的革新者
宠物健康护理领域迎来了一项激动人心的技术革新——智能听诊器。这款创新设备以其卓越的精确度和用户友好的操作,为宠物主人提供了一种全新的健康监测方法。 使用智能听诊器时,只需将其放置在宠物身上,它便能立即捕捉到宠物胸腔的微小振动。…...

001、Mac系统上Stable Diffusion WebUI环境搭建
一、目标 如标题所述,在苹果电脑(Mac)上搭建一套Stable Diffusion本地服务,以实现本地AI生图目的。 二、安装步骤 1、准备源码【等价于准备软件】 # 安装一系列工具库,包括cmake,protobuf,rust,python3.10,git,wge…...
k8s一些名词解释
潮汐计算 是一种根据负载变化动态调整资源分配的计算模式。其核心思想是利用峰值和非峰值时段的资源需求差异,动态地扩展或缩减计算资源。在 Kubernetes 环境中,可以通过自动扩展(auto-scaling)机制,根据工作负载的变化自动调整计算资源,最大化资源利用率并减少不必要的…...

ArkUI组件——循环控制/List
循环控制 class Item{name: stringprice:number}private items:Array<Item> [new Item("A0",2399),new Item("BE",1999),new Item("Ro",2799)] ForEach(this.items,(item:Item) > {})List组件 列表List是一种复杂的容器,…...

定制开发AI智能名片商城微信小程序在私域流量池构建中的应用与策略
摘要 在数字经济蓬勃发展的今天,私域流量已成为企业竞争的新战场。定制开发AI智能名片商城微信小程序,作为私域流量池构建的创新工具,正以其独特的优势助力企业实现用户资源的深度挖掘与高效转化。本文深入探讨了定制开发AI智能名片商城微信…...
day52 ResNet18 CBAM
在深度学习的旅程中,我们不断探索如何提升模型的性能。今天,我将分享我在 ResNet18 模型中插入 CBAM(Convolutional Block Attention Module)模块,并采用分阶段微调策略的实践过程。通过这个过程,我不仅提升…...

(二)TensorRT-LLM | 模型导出(v0.20.0rc3)
0. 概述 上一节 对安装和使用有个基本介绍。根据这个 issue 的描述,后续 TensorRT-LLM 团队可能更专注于更新和维护 pytorch backend。但 tensorrt backend 作为先前一直开发的工作,其中包含了大量可以学习的地方。本文主要看看它导出模型的部分&#x…...
蓝桥杯 2024 15届国赛 A组 儿童节快乐
P10576 [蓝桥杯 2024 国 A] 儿童节快乐 题目描述 五彩斑斓的气球在蓝天下悠然飘荡,轻快的音乐在耳边持续回荡,小朋友们手牵着手一同畅快欢笑。在这样一片安乐祥和的氛围下,六一来了。 今天是六一儿童节,小蓝老师为了让大家在节…...

MMaDA: Multimodal Large Diffusion Language Models
CODE : https://github.com/Gen-Verse/MMaDA Abstract 我们介绍了一种新型的多模态扩散基础模型MMaDA,它被设计用于在文本推理、多模态理解和文本到图像生成等不同领域实现卓越的性能。该方法的特点是三个关键创新:(i) MMaDA采用统一的扩散架构…...

2025盘古石杯决赛【手机取证】
前言 第三届盘古石杯国际电子数据取证大赛决赛 最后一题没有解出来,实在找不到,希望有大佬教一下我。 还有就会议时间,我感觉不是图片时间,因为在电脑看到是其他时间用老会议系统开的会。 手机取证 1、分析鸿蒙手机检材&#x…...

基于IDIG-GAN的小样本电机轴承故障诊断
目录 🔍 核心问题 一、IDIG-GAN模型原理 1. 整体架构 2. 核心创新点 (1) 梯度归一化(Gradient Normalization) (2) 判别器梯度间隙正则化(Discriminator Gradient Gap Regularization) (3) 自注意力机制(Self-Attention) 3. 完整损失函数 二…...
Python+ZeroMQ实战:智能车辆状态监控与模拟模式自动切换
目录 关键点 技术实现1 技术实现2 摘要: 本文将介绍如何利用Python和ZeroMQ消息队列构建一个智能车辆状态监控系统。系统能够根据时间策略自动切换驾驶模式(自动驾驶、人工驾驶、远程驾驶、主动安全),并通过实时消息推送更新车…...

MyBatis中关于缓存的理解
MyBatis缓存 MyBatis系统当中默认定义两级缓存:一级缓存、二级缓存 默认情况下,只有一级缓存开启(sqlSession级别的缓存)二级缓存需要手动开启配置,需要局域namespace级别的缓存 一级缓存(本地缓存&#…...
Pydantic + Function Calling的结合
1、Pydantic Pydantic 是一个 Python 库,用于数据验证和设置管理,通过 Python 类型注解强制执行数据类型。它广泛用于 API 开发(如 FastAPI)、配置管理和数据解析,核心功能包括: 数据验证:通过…...

相关类相关的可视化图像总结
目录 一、散点图 二、气泡图 三、相关图 四、热力图 五、二维密度图 六、多模态二维密度图 七、雷达图 八、桑基图 九、总结 一、散点图 特点 通过点的位置展示两个连续变量之间的关系,可直观判断线性相关、非线性相关或无相关关系,点的分布密…...