提高自动化测试脚本编写效率 5大关键注意事项
提高自动化测试脚本编写效率能加速测试周期,减少人工错误,提升软件质量,促进项目按时交付,增强团队生产力和项目成功率。而自动化测试脚本编写效率低下,往往会导致测试周期延长,增加项目成本,延误软件交付,降低产品质量。
因此,提高自动化测试脚本编写效率非常重要,以下是提高编写效率的注意事项:

1、选择合适的框架和工具
根据项目确定需要执行的测试类型,如单元测试、集成测试、端到端测试或性能测试,并了解项目使用的编程语言和技术栈,选择与之相匹配的框架和工具。
根据测试类型,选择如Selenium WebDriver、Appium、Robot Framework等合适的测试框架,这些框架提供了丰富的API和强大的社区支持,从而显著提升脚本编写效率。
合理利用现成的插件和库,如Selenium IDE、TestNG、JUnit等,可以快速搭建测试环境和脚本基础结构。

2、模块化设计 提高复用性
采用模块化设计策略,将自动化测试脚本分解为独立、可重用的组件(如函数或类),每个模块专注于特定的测试任务或操作。这种做法允许在多个测试场景中重复使用相同的代码片段,减少了重复编写相似逻辑的需要,从而显著提高了脚本编写效率。模块化还便于维护和更新,因为修改或添加功能仅需在相关模块中进行,而不影响整个测试套件。
此外,模块化设计促进了团队协作,不同的测试人员可以专注于开发特定模块,然后将其整合到测试框架中,进一步加速了自动化测试的开发和部署过程。

3、数据驱动测试
数据驱动测试将测试逻辑与数据分离,通过外部数据源(如CSV、Excel或数据库)动态输入测试数据,无需修改代码即可运行不同数据集的测试。这种方法提高了脚本的灵活性和可维护性,减少了为每组数据编写单独脚本的需求,从而加快了测试脚本的编写和执行效率。
数据驱动测试策略增强了测试的全面性,确保软件在各种输入条件下均能正确运行,同时简化了参数化测试的复杂度,从而在不显著增加代码量的情况下,实现了更广泛的测试覆盖。

4、易读性和容错性
通过增强脚本的易读性和容错性,可以显著提高自动化测试脚本的编写效率。易读性意味着清晰的代码结构和命名约定,使脚本逻辑一目了然,便于理解和维护。使用注释解释复杂逻辑,有助于新成员快速上手。容错性涉及实施稳健的错误处理,确保脚本在遇到异常时能够优雅地恢复或提供有用的信息,而不是崩溃,这减少了调试时间。
在编写自动化测试脚本时,应特别关注测试过程中可能出现的异常情况,并增强代码的容错性,以预防因异常情况导致的测试失败。

5、测试数据管理
有效的测试数据管理通过分离数据与脚本逻辑,提高自动化测试效率。使用外部数据源,如CSV、Excel或数据库,可以轻松更新和扩展测试集,无需修改代码。数据驱动的测试方法允许你一次编写脚本,多次运行不同数据,极大地减少了脚本的数量。
集中管理数据便于团队协作,确保数据一致性,减少错误。通过脚本参数化,可以灵活地应用于多种测试场景,提升测试覆盖率,同时简化了维护工作,加速了测试脚本的编写和执行流程。
另外,为了进一步提高测试效率,我们可以使用AI工具,如CoCode自动生成测试用例和测试报告功能,使用AI,自动生成每个需求多维度测试用例,提高测试覆盖度和全面性,保障测试质量,减轻测试人员工作量。

而通过创建报告按钮,可以自动生成任意时间段的测试报告,报告包括:测试执行情况、测试配置、测试汇总、缺陷分析、项目质量评分、测试评价和建议、测试结论等。
相关文章:

提高自动化测试脚本编写效率 5大关键注意事项
提高自动化测试脚本编写效率能加速测试周期,减少人工错误,提升软件质量,促进项目按时交付,增强团队生产力和项目成功率。而自动化测试脚本编写效率低下,往往会导致测试周期延长,增加项目成本,延…...

护眼落地灯哪个更护眼?2024年度最值得入手的5款护眼大路灯推荐
落地灯和台灯哪个更护眼?之所以我们眼睛经常酸痛,很大部分的原因是因为我们长时间在不良光线下,将注意力集中在屏幕或书本上会导致眼睛肌肉过度使用,引发疲劳和酸痛。但也不排除不正确的坐姿或者工作环境缺乏适当的照明引起的&…...
DP讨论——适配器、桥接、代理、装饰器模式通用理解
学而时习之,温故而知新。 共性 适配器、桥接、代理和装饰器模式,实现上基本没啥区别,怎么区分?只能从上下文理解,看目的是啥。 它们,我左看上看下看右看,发现理解可以这么简单:都是A类调用B/…...

Apache AGE的MATCH子句
MATCH子句允许您在数据库中指定查询将搜索的模式。这是检索数据以在查询中使用的主要方法。 通常在MATCH子句之后会跟随一个WHERE子句,以添加用户定义的限制条件到匹配的模式中,以操纵返回的数据集。谓词是模式描述的一部分,不应被视为仅在匹…...
Netty Websocket
一、WebSocket 协议概述 WebSocket 是一种在单个 TCP 连接上进行全双工通信的协议。它允许服务端主动向客户端推送数据,从而实现了实时通信。WebSocket 建立在 HTTP 之上,但与 HTTP 的轮询(Polling)和长轮询(Long Pol…...

用户注册业务逻辑、接口设计和实现、前端逻辑
一、用户注册业务逻辑分析 二、用户注册接口设计和定义 2.1. 设计接口基本思路 对于接口的设计,我们要根据具体的业务逻辑,设计出适合业务逻辑的接口。设计接口的思路: 分析要实现的业务逻辑: 明确在这个业务中涉及到几个相关子…...

ubuntu搭建harbor私仓
1、环境准备 链接: https://pan.baidu.com/s/1q4XBWPd8WdyEn4l253mpUw 提取码: 7ekx --来自百度网盘超级会员v2的分享 准备一台Ubuntu 机器:192.168.124.165 将上面两个文件考入Ubuntu上面 2、安装harbor 安装Docker Harbor仓库以容器方式运行,需要先安装好docker,参考:…...

深层神经网络示例
维度说明: A[L]、Z[L]:(本层神经元个数、样本数) W[L]:(本层神经元个数、上层神经元个数) b[L]:(本层神经元个数、1) dZ[L]:dA[L] * g’A…...
vue中获取剪切板中的内容
目录 1.说明 2.示例 3.总结 1.说明 在系统中的画面或者时外部文件中进行拷贝处理后,在页面中可以获取剪切板的内容。 2.示例 方式①(直接获取) // 异步函数获取剪切板内容 async function getClipboardContent(ev: any) {try {ev.preventDefault()const clip…...

十五、【机器学习】【监督学习】- 神经网络回归
系列文章目录 第一章 【机器学习】初识机器学习 第二章 【机器学习】【监督学习】- 逻辑回归算法 (Logistic Regression) 第三章 【机器学习】【监督学习】- 支持向量机 (SVM) 第四章【机器学习】【监督学习】- K-近邻算法 (K-NN) 第五章【机器学习】【监督学习】- 决策树…...

知识图谱和 LLM:利用Neo4j驾驭大型语言模型(探索真实用例)
这是关于 Neo4j 的 NaLLM 项目的一篇博客文章。这个项目是为了探索、开发和展示这些 LLM 与 Neo4j 结合的实际用途。 2023 年,ChatGPT 等大型语言模型 (LLM) 因其理解和生成类似人类的文本的能力而风靡全球。它们能够适应不同的对话环境、回答各种主题的问题,甚至模拟创意写…...

目标检测入门:4.目标检测中的一阶段模型和两阶段模型
在前面几章里,都只做了目标检测中的目标定位任务,并未做目标分类任务。目标检测作为计算机视觉领域的核心人物之一,旨在从图像中识别出所有感兴趣的目标,并确定它们的类别和位置。现在目标检测以一阶段模型和两阶段模型为代表的。…...

zookeeper+kafka消息队列群集部署
kafka拓扑架构 zookeeper拓扑架构...

[K8S]一、Flink on K8S
Kubernetes | Apache Flink 先编辑好这5个配置文件,然后再直接执行 kubectl create -f ./ kubectl get all kubectl get nodes kubectl get pods kubectl get pod -o wide kubectl get cm -- 获取所有的configmap 配置文件 kubectl logs pod_name -- 查看…...

系统架构设计师教程 第3章 信息系统基础知识-3.1 信息系统概述
系统架构设计师教程 第3章 信息系统基础知识-3.1 信息系统概述 3.1.1 信息系统的定义3.1.1.1 信息系统3.1.1.2 信息化3.1.2 信息系统的发展3.1.2.1 初始阶段3.1.2.2 传播阶段3.1.2.3 控制阶段3.1.2.4 集成阶段3.1.2.5 数据管理阶段3.1.2.6 成熟阶段3.1.3 信息系统的分类3.…...
Gemma的简单理解;Vertex AI的简单理解,与chatGpt区别
目录 Gemma的简单理解 Vertex AI的简单理解 Gemma Vertex AI Gemma Vertex AI和chatcpt区别 一、定义与功能 二、技术特点 三、应用场景 四、获取与部署 Gemma的简单理解 定义与功能: Gemma是谷歌开源的一款大语言模型,它采用了Gemini架构,并提供了20亿(2B)和7…...
Lua 数组
Lua 数组 Lua 是一种轻量级的编程语言,广泛用于游戏开发、脚本编写和其他应用程序。在 Lua 中,数组是一种非常基础和重要的数据结构。本文将详细介绍 Lua 数组的概念、用法和操作方法。 数组的概念 在 Lua 中,数组实际上是一个列表&#x…...
游戏中的敏感词算法初探
在游戏中起名和聊天需要服务器判断是否含有敏感词,从而拒绝或屏蔽敏感词显示,这里枚举一些常用的算法和实际效果。 1.字符串匹配算法 常用的有KMP,核心就是预处理出next数组,也就是失配信息,时间复杂度在O(mn) 。还有个…...
使用Java和Apache Kafka Streams实现实时流处理应用
使用Java和Apache Kafka Streams实现实时流处理应用 大家好,我是微赚淘客系统3.0的小编,是个冬天不穿秋裤,天冷也要风度的程序猿! 引言 实时流处理已经成为现代应用开发中不可或缺的一部分。Apache Kafka Streams是一个强大的库…...

分享 .NET EF6 查询并返回树形结构数据的 2 个思路和具体实现方法
前言 树形结构是一种很常见的数据结构,类似于现实生活中的树的结构,具有根节点、父子关系和层级结构。 所谓根节点,就是整个树的起始节点。 节点则是树中的元素,每个节点可以有零个或多个子节点,节点按照层级排列&a…...

接口测试中缓存处理策略
在接口测试中,缓存处理策略是一个关键环节,直接影响测试结果的准确性和可靠性。合理的缓存处理策略能够确保测试环境的一致性,避免因缓存数据导致的测试偏差。以下是接口测试中常见的缓存处理策略及其详细说明: 一、缓存处理的核…...
【网络】每天掌握一个Linux命令 - iftop
在Linux系统中,iftop是网络管理的得力助手,能实时监控网络流量、连接情况等,帮助排查网络异常。接下来从多方面详细介绍它。 目录 【网络】每天掌握一个Linux命令 - iftop工具概述安装方式核心功能基础用法进阶操作实战案例面试题场景生产场景…...
OpenLayers 可视化之热力图
注:当前使用的是 ol 5.3.0 版本,天地图使用的key请到天地图官网申请,并替换为自己的key 热力图(Heatmap)又叫热点图,是一种通过特殊高亮显示事物密度分布、变化趋势的数据可视化技术。采用颜色的深浅来显示…...

微软PowerBI考试 PL300-选择 Power BI 模型框架【附练习数据】
微软PowerBI考试 PL300-选择 Power BI 模型框架 20 多年来,Microsoft 持续对企业商业智能 (BI) 进行大量投资。 Azure Analysis Services (AAS) 和 SQL Server Analysis Services (SSAS) 基于无数企业使用的成熟的 BI 数据建模技术。 同样的技术也是 Power BI 数据…...

CMake 从 GitHub 下载第三方库并使用
有时我们希望直接使用 GitHub 上的开源库,而不想手动下载、编译和安装。 可以利用 CMake 提供的 FetchContent 模块来实现自动下载、构建和链接第三方库。 FetchContent 命令官方文档✅ 示例代码 我们将以 fmt 这个流行的格式化库为例,演示如何: 使用 FetchContent 从 GitH…...

NLP学习路线图(二十三):长短期记忆网络(LSTM)
在自然语言处理(NLP)领域,我们时刻面临着处理序列数据的核心挑战。无论是理解句子的结构、分析文本的情感,还是实现语言的翻译,都需要模型能够捕捉词语之间依时序产生的复杂依赖关系。传统的神经网络结构在处理这种序列依赖时显得力不从心,而循环神经网络(RNN) 曾被视为…...

用docker来安装部署freeswitch记录
今天刚才测试一个callcenter的项目,所以尝试安装freeswitch 1、使用轩辕镜像 - 中国开发者首选的专业 Docker 镜像加速服务平台 编辑下面/etc/docker/daemon.json文件为 {"registry-mirrors": ["https://docker.xuanyuan.me"] }同时可以进入轩…...

第 86 场周赛:矩阵中的幻方、钥匙和房间、将数组拆分成斐波那契序列、猜猜这个单词
Q1、[中等] 矩阵中的幻方 1、题目描述 3 x 3 的幻方是一个填充有 从 1 到 9 的不同数字的 3 x 3 矩阵,其中每行,每列以及两条对角线上的各数之和都相等。 给定一个由整数组成的row x col 的 grid,其中有多少个 3 3 的 “幻方” 子矩阵&am…...

DingDing机器人群消息推送
文章目录 1 新建机器人2 API文档说明3 代码编写 1 新建机器人 点击群设置 下滑到群管理的机器人,点击进入 添加机器人 选择自定义Webhook服务 点击添加 设置安全设置,详见说明文档 成功后,记录Webhook 2 API文档说明 点击设置说明 查看自…...

实战设计模式之模板方法模式
概述 模板方法模式定义了一个操作中的算法骨架,并将某些步骤延迟到子类中实现。模板方法使得子类可以在不改变算法结构的前提下,重新定义算法中的某些步骤。简单来说,就是在一个方法中定义了要执行的步骤顺序或算法框架,但允许子类…...