当前位置: 首页 > news >正文

【算法】数组中的第K个最大元素

难度:中等

题目:

给定整数数组 nums 和整数 k,请返回数组中第 k 个最大的元素。
请注意,你需要找的是数组排序后的第 k 个最大的元素,而不是第 k 个不同的元素。
你必须设计并实现时间复杂度为 O(n) 的算法解决此问题。

示例 1:

输入: [3,2,1,5,6,4], k = 2
输出: 5

示例 2:

输入: [3,2,3,1,2,4,5,5,6], k = 4
输出: 4

提示:

1 <= k <= nums.length <= 105
-104 <= nums[i] <= 104

解题思路:

要找到数组中第k个最大的元素,且要求时间复杂度为O(n),我们可以使用快速选择算法,这是一种基于快速排序的选择算法变种,用于找到未排序数组中的第k个元素,而无需完全排序数组。

  1. 选择基准:从数组中随机选择一个元素作为基准元素,或者选择数组的第一个元素、最后一个元素等作为基准。
  2. 分区操作:将数组分为两部分,一部分包含所有不大于基准的元素,另一部分包含所有大于基准的元素。这个操作结束后,基准元素会处于它在排序后数组中的最终位置。同时,我们也会得到基准元素在排序后数组中的索引。
  3. 根据基准索引判断
  • 如果基准元素的索引正好是k-1,那么基准元素就是我们要找的第k大的元素。
  • 如果基准元素的索引小于k-1,说明第k大的元素在基准的右边,我们在基准的右边数组中继续执行前两步。
  • 如果基准元素的索引大于k-1,说明第k大的元素在基准的左边,我们在基准的左边数组中继续执行前两步。
  1. 递归或迭代:重复上述过程,直到找到第k大的元素。

JavaScript实现:

function findKthLargest(nums, k) {function partition(left, right, pivotIndex) {const pivotValue = nums[pivotIndex];// 将基准元素交换到数组末尾[nums[pivotIndex], nums[right]] = [nums[right], nums[pivotIndex]];let storeIndex = left;for (let i = left; i < right; i++) {if (nums[i] > pivotValue) {[nums[storeIndex], nums[i]] = [nums[i], nums[storeIndex]];storeIndex++;}}// 将基准元素放到正确的位置[nums[right], nums[storeIndex]] = [nums[storeIndex], nums[right]];return storeIndex;}function quickSelect(left, right, kSmallest) {if (left === right) return nums[left];let pivotIndex = Math.floor(Math.random() * (right - left + 1)) + left;pivotIndex = partition(left, right, pivotIndex);if (kSmallest === pivotIndex) {return nums[kSmallest];} else if (kSmallest < pivotIndex) {return quickSelect(left, pivotIndex - 1, kSmallest);} else {return quickSelect(pivotIndex + 1, right, kSmallest);}}// 调整k为基于0的索引return quickSelect(0, nums.length - 1, nums.length - k);
}// 示例
console.log(findKthLargest([3,2,1,5,6,4], 2)); // 输出: 5,因为排序后数组为[1,2,3,4,5,6],第2大的元素是5

这段代码首先定义了partition函数来实现分区操作,然后定义了quickSelect函数来递归地执行快速选择算法。最后,findKthLargest函数调用quickSelect来找到数组中第k大的元素。注意,由于我们是从0开始计数,所以在调用quickSelect时传入的是nums.length - k。

相关文章:

【算法】数组中的第K个最大元素

难度&#xff1a;中等 题目&#xff1a; 给定整数数组 nums 和整数 k&#xff0c;请返回数组中第 k 个最大的元素。 请注意&#xff0c;你需要找的是数组排序后的第 k 个最大的元素&#xff0c;而不是第 k 个不同的元素。 你必须设计并实现时间复杂度为 O(n) 的算法解决此问题…...

Perl 语言的特点

Perl 语言入门学习可以涵盖多个方面&#xff0c;包括其特点、基本语法、高级特性以及学习资源和社区支持等。以下是一个详细的入门学习指南&#xff1a; 一、Perl 语言的特点 文本处理能力强&#xff1a;Perl 提供了丰富的字符串处理函数和正则表达式的支持&#xff0c;非常适…...

NLP教程:1 词袋模型和TFIDF模型

文章目录 词袋模型TF-IDF模型词汇表模型 词袋模型 文本特征提取有两个非常重要的模型&#xff1a; 词集模型&#xff1a;单词构成的集合&#xff0c;集合自然每个元素都只有一个&#xff0c;也即词集中的每个单词都只有一个。 词袋模型&#xff1a;在词集的基础上如果一个单词…...

【开源 Mac 工具推荐之 2】洛雪音乐(lx-music-desktop):免费良心的音乐平台

旧版文章&#xff1a;【macOS免费软件推荐】第6期&#xff1a;洛雪音乐 Note&#xff1a;本文在旧版文章的基础上&#xff0c;新更新展示了一些洛雪音乐的新功能&#xff0c;并且描述更为详细。 简介 洛雪音乐&#xff08;GitHub 名&#xff1a;lx-music-desktop &#xff09;…...

AMEYA360:思瑞浦推出汽车级理想二极管ORing控制器TPS65R01Q

聚焦高性能模拟芯片和嵌入式处理器的半导体供应商思瑞浦3PEAK(股票代码&#xff1a;688536)发布汽车级理想二极管ORing控制器TPS65R01Q。 TPS65R01Q拥有20mV正向调节功能&#xff0c;降低系统损耗。快速反向关断(Typ&#xff1a;0.39μs)&#xff0c;在电池反向和各种汽车电气瞬…...

简约的悬浮动态特效404单页源HTML码

源码介绍 简约的悬浮动态特效404单页源HTML码,页面简约美观,可以做网站错误页或者丢失页面,将下面的代码放到空白的HTML里面,然后上传到服务器里面,设置好重定向即可 效果预览 完整源码 <!DOCTYPE html> <html><head><meta charset="utf-8&q…...

Golang 创建 Excel 文件

经常会遇到需要导出数据报表的需求&#xff0c;除了可以通过 encoding/csv 导出 CSV 以外&#xff0c;还可以使用 https://github.com/qax-os/excelize 导出 xlsx 等格式的 excel&#xff0c;下面封装了一个方法&#xff0c;支持多 sheet 的 excel 数据生成&#xff0c;导出按需…...

探索GitHub上的两个革命性开源项目

在数字世界中&#xff0c;总有一些项目能够以其创新性和实用性脱颖而出&#xff0c;吸引全球开发者的目光。今天&#xff0c;我们将深入探索GitHub上的两个令人惊叹的开源项目&#xff1a;Comic Translate和GPTPDF&#xff0c;它们不仅改变了我们处理信息的方式&#xff0c;还极…...

SpringBoot框架学习笔记(三):Lombok 和 Spring Initailizr

1 Lombok 1.1 Lombok 介绍 &#xff08;1&#xff09;Lombok 作用 简化JavaBean开发&#xff0c;可以使用Lombok的注解让代码更加简洁Java项目中&#xff0c;很多没有技术含量又必须存在的代码&#xff1a;POJO的getter/setter/toString&#xff1b;异常处理&#xff1b;I/O…...

【ASP.NET网站传值问题】“object”不包含“GetEnumerator”的公共定义,因此 foreach 语句不能作用于“object”类型的变量等

问题一&#xff1a;不允许遍历 原因&#xff1a;实体未强制转化 后端: ViewData["CateGroupList"] grouplist; 前端加上&#xff1a;var catelist ViewData["CateGroupList"] as List<Catelogue>; 这样就可以遍历catelist了 问题二&#xff1a…...

Stateflow中的状态转换表

状态转换表是表达顺序模态逻辑的另一种方式。不要在Stateflow图表中以图形方式绘制状态和转换&#xff0c;而是使用状态转换表以表格格式表示模态逻辑。 使用状态转换表的好处包括&#xff1a; 易于对类列车状态机进行建模&#xff0c;其中模态逻辑涉及从一个状态到其邻居的转换…...

结合Redis解决接口幂等性问题

结合Redis解决接口幂等性问题 引言正文收获 引言 该问题产生背景是根据需求描述&#xff0c;要求对已发布的课程能进行编辑修改&#xff0c;并且要求能进行回滚。 幂等性问题描述&#xff1a;对同一个接口并发请求产生的结果是不变的。 Get 请求以及 Delete 请求天然保证幂等…...

2024算力基础设施安全架构设计与思考(免费下载)

算网安全体系是将数据中心集群、算力枢纽、一体化大数据中心三个层级的安全需求进行工程化解耦&#xff0c;从国家安全角度统筹设计&#xff0c;通过安全 服务化方式&#xff0c;依托威胁情报和指挥协同通道将三层四级安全体系串联贯通&#xff0c;达成一体化大数据安全目标。 …...

ExoPlayer架构详解与源码分析(15)——Renderer

系列文章目录 ExoPlayer架构详解与源码分析&#xff08;1&#xff09;——前言 ExoPlayer架构详解与源码分析&#xff08;2&#xff09;——Player ExoPlayer架构详解与源码分析&#xff08;3&#xff09;——Timeline ExoPlayer架构详解与源码分析&#xff08;4&#xff09;—…...

网络安全-等级保护制度介绍

一、等保发展历程 &#xff08;1&#xff09;1994国务院147号令 第一次提出等级保护概念&#xff0c;要求对信息系统分等级进行保护 &#xff08;2&#xff09;1999年GB17859 国家强制标准发布&#xff0c;信息系统等级保护必须遵循的法规 &#xff08;3&#xff09;2005年公安…...

【介绍下大数据组件之Storm】

&#x1f3a5;博主&#xff1a;程序员不想YY啊 &#x1f4ab;CSDN优质创作者&#xff0c;CSDN实力新星&#xff0c;CSDN博客专家 &#x1f917;点赞&#x1f388;收藏⭐再看&#x1f4ab;养成习惯 ✨希望本文对您有所裨益&#xff0c;如有不足之处&#xff0c;欢迎在评论区提出…...

React Hook 总结(React 萌新升级打怪中...)

1 useCallback useMemo 和 useCallback 接收的参数都是一样&#xff0c;都是在其依赖项发生变化后才执行&#xff0c;都是返回缓存的值&#xff0c;区别在于 useMemo 返回的是函数运行的结果&#xff0c;useCallback 返回的是函数。 当需要使用 useCallback 的情况通常包括以…...

Typora 1.5.8 版本安装下载教程 (轻量级 Markdown 编辑器),图文步骤详解,免费领取

文章目录 软件介绍软件下载安装步骤激活步骤 软件介绍 Typora是一款基于Markdown语法的轻量级文本编辑器&#xff0c;它的主要目标是为用户提供一个简洁、高效的写作环境。以下是Typora的一些主要特点和功能&#xff1a; 实时预览&#xff1a;Typora支持实时预览功能&#xff0…...

mac docker no space left on device

mac 上 docker 拉取镜像报错 Error response from daemon: write /var/lib/docker/tmp/docker-export-3995807640/b8464f52498789c4ebbc063d508f04e8d2586567fbffa475e3cd9afd3c5a7cf2/layer.tar: no space left on device解决&#xff1a; 增加 docker 虚拟磁盘大小。如下图...

单片机主控的基本电路

论文 1.复位电路 2.启动模式设置接口 3.VBAT供电接口 4.MCU 基本电路 5.参考电压选择端口...

浅谈 React Hooks

React Hooks 是 React 16.8 引入的一组 API&#xff0c;用于在函数组件中使用 state 和其他 React 特性&#xff08;例如生命周期方法、context 等&#xff09;。Hooks 通过简洁的函数接口&#xff0c;解决了状态与 UI 的高度解耦&#xff0c;通过函数式编程范式实现更灵活 Rea…...

生成xcframework

打包 XCFramework 的方法 XCFramework 是苹果推出的一种多平台二进制分发格式&#xff0c;可以包含多个架构和平台的代码。打包 XCFramework 通常用于分发库或框架。 使用 Xcode 命令行工具打包 通过 xcodebuild 命令可以打包 XCFramework。确保项目已经配置好需要支持的平台…...

从零实现富文本编辑器#5-编辑器选区模型的状态结构表达

先前我们总结了浏览器选区模型的交互策略&#xff0c;并且实现了基本的选区操作&#xff0c;还调研了自绘选区的实现。那么相对的&#xff0c;我们还需要设计编辑器的选区表达&#xff0c;也可以称为模型选区。编辑器中应用变更时的操作范围&#xff0c;就是以模型选区为基准来…...

MMaDA: Multimodal Large Diffusion Language Models

CODE &#xff1a; https://github.com/Gen-Verse/MMaDA Abstract 我们介绍了一种新型的多模态扩散基础模型MMaDA&#xff0c;它被设计用于在文本推理、多模态理解和文本到图像生成等不同领域实现卓越的性能。该方法的特点是三个关键创新:(i) MMaDA采用统一的扩散架构&#xf…...

DIY|Mac 搭建 ESP-IDF 开发环境及编译小智 AI

前一阵子在百度 AI 开发者大会上&#xff0c;看到基于小智 AI DIY 玩具的演示&#xff0c;感觉有点意思&#xff0c;想着自己也来试试。 如果只是想烧录现成的固件&#xff0c;乐鑫官方除了提供了 Windows 版本的 Flash 下载工具 之外&#xff0c;还提供了基于网页版的 ESP LA…...

Linux云原生安全:零信任架构与机密计算

Linux云原生安全&#xff1a;零信任架构与机密计算 构建坚不可摧的云原生防御体系 引言&#xff1a;云原生安全的范式革命 随着云原生技术的普及&#xff0c;安全边界正在从传统的网络边界向工作负载内部转移。Gartner预测&#xff0c;到2025年&#xff0c;零信任架构将成为超…...

【配置 YOLOX 用于按目录分类的图片数据集】

现在的图标点选越来越多&#xff0c;如何一步解决&#xff0c;采用 YOLOX 目标检测模式则可以轻松解决 要在 YOLOX 中使用按目录分类的图片数据集&#xff08;每个目录代表一个类别&#xff0c;目录下是该类别的所有图片&#xff09;&#xff0c;你需要进行以下配置步骤&#x…...

NLP学习路线图(二十三):长短期记忆网络(LSTM)

在自然语言处理(NLP)领域,我们时刻面临着处理序列数据的核心挑战。无论是理解句子的结构、分析文本的情感,还是实现语言的翻译,都需要模型能够捕捉词语之间依时序产生的复杂依赖关系。传统的神经网络结构在处理这种序列依赖时显得力不从心,而循环神经网络(RNN) 曾被视为…...

网站指纹识别

网站指纹识别 网站的最基本组成&#xff1a;服务器&#xff08;操作系统&#xff09;、中间件&#xff08;web容器&#xff09;、脚本语言、数据厍 为什么要了解这些&#xff1f;举个例子&#xff1a;发现了一个文件读取漏洞&#xff0c;我们需要读/etc/passwd&#xff0c;如…...

(一)单例模式

一、前言 单例模式属于六大创建型模式,即在软件设计过程中,主要关注创建对象的结果,并不关心创建对象的过程及细节。创建型设计模式将类对象的实例化过程进行抽象化接口设计,从而隐藏了类对象的实例是如何被创建的,封装了软件系统使用的具体对象类型。 六大创建型模式包括…...