当前位置: 首页 > news >正文

帝王蝶算法(EBOA)及Python和MATLAB实现

帝王蝶算法(Emperor Butterfly Optimization Algorithm,简称EBOA)是一种启发式优化算法,灵感来源于蝴蝶群体中的帝王蝶(Emperor Butterfly)。该算法模拟了帝王蝶群体中帝王蝶和其他蝴蝶之间的交互行为,以实现问题的优化目标。帝王蝶算法整合了蝴蝶群体的社会行为和个体求解能力,具有较强的全局收敛性和快速收敛速度。

算法原理:
帝王蝶算法利用蝴蝶群体中帝王蝶的领导作用和其他蝴蝶的搜索行为来实现优化目标。帝王蝶作为领袖负责指导整个搜索过程,其他蝴蝶则根据帝王蝶的指示和自身能力进行搜索。算法主要包含两个阶段:帝王蝶策略和蝴蝶搜索策略。

实现步骤:

1. 初始化参数:设置种群大小、迭代次数、搜索空间等参数,并随机初始化帝王蝶和其他蝴蝶的位置。

2. 帝王蝶策略:
   - 根据适应度函数评估每个蝴蝶的适应度,并选出适应度最高的蝴蝶作为帝王蝶。
   - 帝王蝶根据一定策略更新自身位置,例如使用随机游走或其他优化算法。
   - 帝王蝶与其他蝴蝶之间进行信息传递,指导其他蝴蝶朝着更优的方向移动。

3. 蝴蝶搜索策略:
   - 其他蝴蝶根据帝王蝶的指示和自身搜索能力,在搜索空间中移动,并更新位置。
   - 蝴蝶的移动速度和方向受到帝王蝶的引导和个体经验的影响,有助于全局和局部搜索的均衡。

4. 更新种群:
   - 根据一定的更新策略,更新种群中每个蝴蝶的位置和适应度。
   - 根据适应度评估并记录最优解。

5. 终止条件:
   - 根据预设的迭代次数或满足停止条件时,结束算法。

帝王蝶算法结合了帝王蝶和其他蝴蝶之间的协作和竞争关系,通过领袖和群体的互动实现优化目标。该算法具有较好的收敛性能和全局搜索能力,适用于解决复杂的优化问题。在实际应用中,可以根据问题特点和需求调节算法参数和优化策略,以获得更好的优化结果。
 

帝王蝶算法(Monarch Butterfly Optimization Algorithm,MBO)是一种基于帝王蝶群体行为的优化算法,模拟了帝王蝶的群体聚集和搜索行为。帝王蝶算法具有良好的全局搜索能力和高效的收敛性,适用于解决各种优化问题。下面分别提供帝王蝶算法的Python和MATLAB实现代码:

Python实现:

import numpy as np

# 定义目标函数(示例函数,可根据实际问题替换)
def objective_function(x):
    return sum(x**2)

# 帝王蝶算法函数
def monarch_butterfly_optimization(func, num_butterflies, num_iterations, dim, lb, ub):
    best_solution = None
    best_fitness = float('inf')
    
    butterflies = np.random.uniform(lb, ub, (num_butterflies, dim))
    
    for iteration in range(num_iterations):
        for i in range(num_butterflies):
            new_solution = butterflies[i] + np.random.uniform(-1, 1, dim)
            new_solution = np.clip(new_solution, lb, ub)
            fitness = func(new_solution)
            
            if fitness < best_fitness:
                best_solution = new_solution
                best_fitness = fitness
                
            if fitness < func(butterflies[i]):
                butterflies[i] = new_solution
                
    return best_solution, best_fitness

# 参数设置
num_butterflies = 50
num_iterations = 100
dim = 10
lb = -10
ub = 10

# 运行帝王蝶算法
best_solution, best_fitness = monarch_butterfly_optimization(objective_function, num_butterflies, num_iterations, dim, lb, ub)

print("Best solution found:", best_solution)
print("Best fitness:", best_fitness)

MATLAB实现:

% 定义目标函数(示例函数,可根据实际问题替换)
function f = objective_function(x)
    f = sum(x.^2);
end

% 帝王蝶算法函数
function [best_solution, best_fitness] = monarch_butterfly_optimization(func, num_butterflies, num_iterations, dim, lb, ub)
    best_solution = [];
    best_fitness = Inf;
    
    butterflies = lb + (ub - lb) * rand(num_butterflies, dim);
    
    for iteration = 1:num_iterations
        for i = 1:num_butterflies
            new_solution = butterflies(i, :) + randn(1, dim);
            new_solution = max(new_solution, lb);
            new_solution = min(new_solution, ub);
            fitness = func(new_solution);
            
            if fitness < best_fitness
                best_solution = new_solution;
                best_fitness = fitness;
            end
            
            if func(new_solution) < func(butterflies(i, :))
                butterflies(i, :) = new_solution;
            end
        end
    end
end

% 参数设置
num_butterflies = 50;
num_iterations = 100;
dim = 10;
lb = -10;
ub = 10;

% 运行帝王蝶算法
[best_solution, best_fitness] = monarch_butterfly_optimization(@objective_function, num_butterflies, num_iterations, dim, lb, ub);

disp('Best solution found:');
disp(best_solution);
disp('Best fitness:');
disp(best_fitness);

相关文章:

帝王蝶算法(EBOA)及Python和MATLAB实现

帝王蝶算法&#xff08;Emperor Butterfly Optimization Algorithm&#xff0c;简称EBOA&#xff09;是一种启发式优化算法&#xff0c;灵感来源于蝴蝶群体中的帝王蝶&#xff08;Emperor Butterfly&#xff09;。该算法模拟了帝王蝶群体中帝王蝶和其他蝴蝶之间的交互行为&…...

【学术会议征稿】第六届信息与计算机前沿技术国际学术会议(ICFTIC 2024)

第六届信息与计算机前沿技术国际学术会议(ICFTIC 2024) 2024 6th International Conference on Frontier Technologies of Information and Computer 第六届信息与计算机前沿技术国际学术会议(ICFTIC 2024)将在中国青岛举行&#xff0c;会期是2024年11月8-10日&#xff0c;为…...

PHP MySQL 读取数据

PHP MySQL 读取数据 PHP和MySQL是Web开发中的经典组合&#xff0c;广泛用于创建动态网站和应用程序。在PHP中读取MySQL数据库中的数据是一项基本技能&#xff0c;涉及到连接数据库、执行查询以及处理结果集。本文将详细介绍如何使用PHP从MySQL数据库中读取数据。 1. 环境准备…...

点亮 LED-I.MX6U嵌入式Linux C应用编程学习笔记基于正点原子阿尔法开发板

点亮 LED 应用层操控硬件的两种方式 背景 Linux系统将所有内容视作文件&#xff0c;包括硬件设备&#xff0c;通过文件I/O方式与硬件交互 设备文件&#xff0c;如字符设备文件与块设备文件&#xff0c;是硬件设备提供给应用层的接口 应用层通过设备文件进行I/O操作&#xff…...

从0到1搭建数据中台(4):neo4j初识及安装使用

在数据中台中&#xff0c;neo4j作为图数据库&#xff0c;可以用于数据血缘关系的存储 图数据库的其他用于主要用于知识图谱&#xff0c;人物关系的搭建&#xff0c;描述实体&#xff0c;关系&#xff0c;以及实体属性 安装 在官网 https://neo4j.com/ 下载安装包 neo4j-co…...

【20】读感 - 架构整洁之道(二)

概述 继上一篇文章讲了前两章的读感&#xff0c;已经归纳总结的重点&#xff0c;这章会继续跟进的看一下&#xff0c;深挖架构整洁之道。 编程范式 编程范式从早期到至今&#xff0c;提过哪些编程范式&#xff0c;结构化编程&#xff0c;面向对象编程&#xff0c;函数式编程…...

js vue axios post 数组请求参数获取转换, 后端go参数解析(gin框架)全流程示例

今天介绍的是前后端分离系统中的请求参数 数组参数的生成&#xff0c;api请求发送&#xff0c;到后端请求参数接收的全过程示例。 为何会有这个文章&#xff1a;后端同一个API接口同时处理单条或者多条数据&#xff0c;这样就要求我们在前端发送请求参数的时候需要统一将请…...

揭秘郭采洁浪漫升级

【揭秘&#xff01;郭采洁浪漫升级&#xff0c;与“莫拉怪乐”共谱爱情新篇章】在这个春意盎然的季节里&#xff0c;娱乐圈迎来了一则既意外又甜蜜的爆炸新闻——郭采洁&#xff0c;这位以独特气质与精湛演技著称的才女&#xff0c;悄然间迈入了人生的新阶段&#xff0c;而她的…...

数据结构(Java):力扣牛客 二叉树面试OJ题(一)

&#x1f449; ​​​​​​目录 &#x1f448; 1、题一&#xff1a;检查两棵树是否相同 1.1 思路分析 1.2 代码 2、题二&#xff1a;另一棵树的子树 2.1 思路分析 2.2 代码 3、题三&#xff1a;翻转二叉树 3.1 思路分析 3.2 代码 4、题四&#xff1a;判断树是否对称 …...

在国产芯片上实现YOLOv5/v8图像AI识别-【1.3】YOLOv5的介绍及使用(训练、导出)更多内容见视频

本专栏主要是提供一种国产化图像识别的解决方案&#xff0c;专栏中实现了YOLOv5/v8在国产化芯片上的使用部署&#xff0c;并可以实现网页端实时查看。根据自己的具体需求可以直接产品化部署使用。 B站配套视频&#xff1a;https://www.bilibili.com/video/BV1or421T74f 数据…...

逻辑门的题目怎么做?

FPGA语法练习——二输入逻辑门&#xff0c;一起来听~~ FPGA语法练习——二输入逻辑门 题目介绍&#xff1a;F学社-全球FPGA技术提升平台 (zzfpga.com)...

CentOS 7报错:yum命令报错 “ Cannot find a valid baseurl for repo: base/7/x86_6 ”

参考连接&#xff1a; 【linux】CentOS 7报错&#xff1a;yum命令报错 “ Cannot find a valid baseurl for repo: base/7/x86_6 ”_centos linux yum search ifconfig cannot find a val-CSDN博客 Centos7出现问题Cannot find a valid baseurl for repo: base/7/x86_64&…...

51单片机STC89C52RC——18.1 HC-SR04超声波测距

目的/效果 独立按键K1按下后开始测距&#xff0c;LCD显示距离&#xff08;mm&#xff09; 一&#xff0c;STC单片机模块 二&#xff0c;HC-SR04 超声波测距 2.1 HC-SR04 简介 HC-SR04超声波测距模块提供2cm~400cm的测距功能&#xff0c;精度达3mm。 2.2 时序 以上时序图表明…...

WordPress与 wp-cron.php

WordPress 傲居全球最流行的内容管理系统&#xff08;CMS&#xff09;之位&#xff0c;占据了互联网约43%的网站后台&#xff0c;这主要得益于其直观易用的用户界面以及丰富的扩展功能&#xff0c;特别是为新手用户提供了极大的便利。 然而&#xff0c;在畅享WordPress带来的便…...

bb-------

社保费申报及缴纳...

数据挖掘与分析部分实验与实训项目报告

一、机器学习算法的应用 1. 朴素贝叶斯分类器 相关代码 import pandas as pd from sklearn.model_selection import train_test_split from sklearn.naive_bayes import GaussianNB, MultinomialNB from sklearn.metrics import accuracy_score # 将数据加载到DataFrame中&a…...

Python中使用SpeechLib实现文本转换语音朗读的示例(修正bug)

一、修正SpeechLib的导入包顺序后的代码&#xff1a; from comtypes.client import CreateObjectengine CreateObject(SAPI.SpVoice) stream CreateObject(SAPI.SpFileStream)from comtypes.gen import SpeechLibinfile E:\\语音文档\\易经64卦读音.txt outfile E:\\demo.…...

政安晨【零基础玩转各类开源AI项目】基于Ubuntu系统部署Hallo :针对肖像图像动画的分层音频驱动视觉合成

政安晨的个人主页&#xff1a;政安晨 欢迎 &#x1f44d;点赞✍评论⭐收藏 收录专栏: 零基础玩转各类开源AI项目 希望政安晨的博客能够对您有所裨益&#xff0c;如有不足之处&#xff0c;欢迎在评论区提出指正&#xff01; 本文目标&#xff1a;在Ubuntu系统上部署Hallo&#x…...

Spring Boot1(概要 入门 Spring Boot 核心配置 YAML JSR303数据校验 )

目录 一、Spring Boot概要 1. SpringBoot优点 2. SpringBoot缺点 二、Spring Boot入门开发 1. 第一个SpringBoot项目 项目创建方式一&#xff1a;使用 IDEA 直接创建项目 项目创建方式二&#xff1a;使用Spring Initializr 的 Web页面创建项目 &#xff08;了解&#…...

电脑屏幕录制怎么弄?分享3个简单的电脑录屏方法

在信息爆炸的时代&#xff0c;屏幕上的每一个画面都可能成为我们生活中不可或缺的记忆。作为一名年轻男性&#xff0c;我对于录屏软件的需求可以说是既挑剔又实际。今天&#xff0c;我就为大家分享一下我近期体验的三款录屏软件&#xff1a;福昕录屏大师、转转大师录屏大师和OB…...

大话软工笔记—需求分析概述

需求分析&#xff0c;就是要对需求调研收集到的资料信息逐个地进行拆分、研究&#xff0c;从大量的不确定“需求”中确定出哪些需求最终要转换为确定的“功能需求”。 需求分析的作用非常重要&#xff0c;后续设计的依据主要来自于需求分析的成果&#xff0c;包括: 项目的目的…...

从零实现富文本编辑器#5-编辑器选区模型的状态结构表达

先前我们总结了浏览器选区模型的交互策略&#xff0c;并且实现了基本的选区操作&#xff0c;还调研了自绘选区的实现。那么相对的&#xff0c;我们还需要设计编辑器的选区表达&#xff0c;也可以称为模型选区。编辑器中应用变更时的操作范围&#xff0c;就是以模型选区为基准来…...

Redis相关知识总结(缓存雪崩,缓存穿透,缓存击穿,Redis实现分布式锁,如何保持数据库和缓存一致)

文章目录 1.什么是Redis&#xff1f;2.为什么要使用redis作为mysql的缓存&#xff1f;3.什么是缓存雪崩、缓存穿透、缓存击穿&#xff1f;3.1缓存雪崩3.1.1 大量缓存同时过期3.1.2 Redis宕机 3.2 缓存击穿3.3 缓存穿透3.4 总结 4. 数据库和缓存如何保持一致性5. Redis实现分布式…...

【第二十一章 SDIO接口(SDIO)】

第二十一章 SDIO接口 目录 第二十一章 SDIO接口(SDIO) 1 SDIO 主要功能 2 SDIO 总线拓扑 3 SDIO 功能描述 3.1 SDIO 适配器 3.2 SDIOAHB 接口 4 卡功能描述 4.1 卡识别模式 4.2 卡复位 4.3 操作电压范围确认 4.4 卡识别过程 4.5 写数据块 4.6 读数据块 4.7 数据流…...

SpringTask-03.入门案例

一.入门案例 启动类&#xff1a; package com.sky;import lombok.extern.slf4j.Slf4j; import org.springframework.boot.SpringApplication; import org.springframework.boot.autoconfigure.SpringBootApplication; import org.springframework.cache.annotation.EnableCach…...

代码随想录刷题day30

1、零钱兑换II 给你一个整数数组 coins 表示不同面额的硬币&#xff0c;另给一个整数 amount 表示总金额。 请你计算并返回可以凑成总金额的硬币组合数。如果任何硬币组合都无法凑出总金额&#xff0c;返回 0 。 假设每一种面额的硬币有无限个。 题目数据保证结果符合 32 位带…...

PAN/FPN

import torch import torch.nn as nn import torch.nn.functional as F import mathclass LowResQueryHighResKVAttention(nn.Module):"""方案 1: 低分辨率特征 (Query) 查询高分辨率特征 (Key, Value).输出分辨率与低分辨率输入相同。"""def __…...

云原生安全实战:API网关Kong的鉴权与限流详解

&#x1f525;「炎码工坊」技术弹药已装填&#xff01; 点击关注 → 解锁工业级干货【工具实测|项目避坑|源码燃烧指南】 一、基础概念 1. API网关&#xff08;API Gateway&#xff09; API网关是微服务架构中的核心组件&#xff0c;负责统一管理所有API的流量入口。它像一座…...

go 里面的指针

指针 在 Go 中&#xff0c;指针&#xff08;pointer&#xff09;是一个变量的内存地址&#xff0c;就像 C 语言那样&#xff1a; a : 10 p : &a // p 是一个指向 a 的指针 fmt.Println(*p) // 输出 10&#xff0c;通过指针解引用• &a 表示获取变量 a 的地址 p 表示…...

Cilium动手实验室: 精通之旅---13.Cilium LoadBalancer IPAM and L2 Service Announcement

Cilium动手实验室: 精通之旅---13.Cilium LoadBalancer IPAM and L2 Service Announcement 1. LAB环境2. L2公告策略2.1 部署Death Star2.2 访问服务2.3 部署L2公告策略2.4 服务宣告 3. 可视化 ARP 流量3.1 部署新服务3.2 准备可视化3.3 再次请求 4. 自动IPAM4.1 IPAM Pool4.2 …...