帝王蝶算法(EBOA)及Python和MATLAB实现
帝王蝶算法(Emperor Butterfly Optimization Algorithm,简称EBOA)是一种启发式优化算法,灵感来源于蝴蝶群体中的帝王蝶(Emperor Butterfly)。该算法模拟了帝王蝶群体中帝王蝶和其他蝴蝶之间的交互行为,以实现问题的优化目标。帝王蝶算法整合了蝴蝶群体的社会行为和个体求解能力,具有较强的全局收敛性和快速收敛速度。
算法原理:
帝王蝶算法利用蝴蝶群体中帝王蝶的领导作用和其他蝴蝶的搜索行为来实现优化目标。帝王蝶作为领袖负责指导整个搜索过程,其他蝴蝶则根据帝王蝶的指示和自身能力进行搜索。算法主要包含两个阶段:帝王蝶策略和蝴蝶搜索策略。
实现步骤:
1. 初始化参数:设置种群大小、迭代次数、搜索空间等参数,并随机初始化帝王蝶和其他蝴蝶的位置。
2. 帝王蝶策略:
- 根据适应度函数评估每个蝴蝶的适应度,并选出适应度最高的蝴蝶作为帝王蝶。
- 帝王蝶根据一定策略更新自身位置,例如使用随机游走或其他优化算法。
- 帝王蝶与其他蝴蝶之间进行信息传递,指导其他蝴蝶朝着更优的方向移动。
3. 蝴蝶搜索策略:
- 其他蝴蝶根据帝王蝶的指示和自身搜索能力,在搜索空间中移动,并更新位置。
- 蝴蝶的移动速度和方向受到帝王蝶的引导和个体经验的影响,有助于全局和局部搜索的均衡。
4. 更新种群:
- 根据一定的更新策略,更新种群中每个蝴蝶的位置和适应度。
- 根据适应度评估并记录最优解。
5. 终止条件:
- 根据预设的迭代次数或满足停止条件时,结束算法。
帝王蝶算法结合了帝王蝶和其他蝴蝶之间的协作和竞争关系,通过领袖和群体的互动实现优化目标。该算法具有较好的收敛性能和全局搜索能力,适用于解决复杂的优化问题。在实际应用中,可以根据问题特点和需求调节算法参数和优化策略,以获得更好的优化结果。
帝王蝶算法(Monarch Butterfly Optimization Algorithm,MBO)是一种基于帝王蝶群体行为的优化算法,模拟了帝王蝶的群体聚集和搜索行为。帝王蝶算法具有良好的全局搜索能力和高效的收敛性,适用于解决各种优化问题。下面分别提供帝王蝶算法的Python和MATLAB实现代码:
Python实现:
import numpy as np
# 定义目标函数(示例函数,可根据实际问题替换)
def objective_function(x):
return sum(x**2)
# 帝王蝶算法函数
def monarch_butterfly_optimization(func, num_butterflies, num_iterations, dim, lb, ub):
best_solution = None
best_fitness = float('inf')
butterflies = np.random.uniform(lb, ub, (num_butterflies, dim))
for iteration in range(num_iterations):
for i in range(num_butterflies):
new_solution = butterflies[i] + np.random.uniform(-1, 1, dim)
new_solution = np.clip(new_solution, lb, ub)
fitness = func(new_solution)
if fitness < best_fitness:
best_solution = new_solution
best_fitness = fitness
if fitness < func(butterflies[i]):
butterflies[i] = new_solution
return best_solution, best_fitness
# 参数设置
num_butterflies = 50
num_iterations = 100
dim = 10
lb = -10
ub = 10
# 运行帝王蝶算法
best_solution, best_fitness = monarch_butterfly_optimization(objective_function, num_butterflies, num_iterations, dim, lb, ub)
print("Best solution found:", best_solution)
print("Best fitness:", best_fitness)
MATLAB实现:
% 定义目标函数(示例函数,可根据实际问题替换)
function f = objective_function(x)
f = sum(x.^2);
end
% 帝王蝶算法函数
function [best_solution, best_fitness] = monarch_butterfly_optimization(func, num_butterflies, num_iterations, dim, lb, ub)
best_solution = [];
best_fitness = Inf;
butterflies = lb + (ub - lb) * rand(num_butterflies, dim);
for iteration = 1:num_iterations
for i = 1:num_butterflies
new_solution = butterflies(i, :) + randn(1, dim);
new_solution = max(new_solution, lb);
new_solution = min(new_solution, ub);
fitness = func(new_solution);
if fitness < best_fitness
best_solution = new_solution;
best_fitness = fitness;
end
if func(new_solution) < func(butterflies(i, :))
butterflies(i, :) = new_solution;
end
end
end
end
% 参数设置
num_butterflies = 50;
num_iterations = 100;
dim = 10;
lb = -10;
ub = 10;
% 运行帝王蝶算法
[best_solution, best_fitness] = monarch_butterfly_optimization(@objective_function, num_butterflies, num_iterations, dim, lb, ub);
disp('Best solution found:');
disp(best_solution);
disp('Best fitness:');
disp(best_fitness);
相关文章:
帝王蝶算法(EBOA)及Python和MATLAB实现
帝王蝶算法(Emperor Butterfly Optimization Algorithm,简称EBOA)是一种启发式优化算法,灵感来源于蝴蝶群体中的帝王蝶(Emperor Butterfly)。该算法模拟了帝王蝶群体中帝王蝶和其他蝴蝶之间的交互行为&…...
【学术会议征稿】第六届信息与计算机前沿技术国际学术会议(ICFTIC 2024)
第六届信息与计算机前沿技术国际学术会议(ICFTIC 2024) 2024 6th International Conference on Frontier Technologies of Information and Computer 第六届信息与计算机前沿技术国际学术会议(ICFTIC 2024)将在中国青岛举行,会期是2024年11月8-10日,为…...
PHP MySQL 读取数据
PHP MySQL 读取数据 PHP和MySQL是Web开发中的经典组合,广泛用于创建动态网站和应用程序。在PHP中读取MySQL数据库中的数据是一项基本技能,涉及到连接数据库、执行查询以及处理结果集。本文将详细介绍如何使用PHP从MySQL数据库中读取数据。 1. 环境准备…...
点亮 LED-I.MX6U嵌入式Linux C应用编程学习笔记基于正点原子阿尔法开发板
点亮 LED 应用层操控硬件的两种方式 背景 Linux系统将所有内容视作文件,包括硬件设备,通过文件I/O方式与硬件交互 设备文件,如字符设备文件与块设备文件,是硬件设备提供给应用层的接口 应用层通过设备文件进行I/O操作ÿ…...
从0到1搭建数据中台(4):neo4j初识及安装使用
在数据中台中,neo4j作为图数据库,可以用于数据血缘关系的存储 图数据库的其他用于主要用于知识图谱,人物关系的搭建,描述实体,关系,以及实体属性 安装 在官网 https://neo4j.com/ 下载安装包 neo4j-co…...
【20】读感 - 架构整洁之道(二)
概述 继上一篇文章讲了前两章的读感,已经归纳总结的重点,这章会继续跟进的看一下,深挖架构整洁之道。 编程范式 编程范式从早期到至今,提过哪些编程范式,结构化编程,面向对象编程,函数式编程…...
js vue axios post 数组请求参数获取转换, 后端go参数解析(gin框架)全流程示例
今天介绍的是前后端分离系统中的请求参数 数组参数的生成,api请求发送,到后端请求参数接收的全过程示例。 为何会有这个文章:后端同一个API接口同时处理单条或者多条数据,这样就要求我们在前端发送请求参数的时候需要统一将请…...
揭秘郭采洁浪漫升级
【揭秘!郭采洁浪漫升级,与“莫拉怪乐”共谱爱情新篇章】在这个春意盎然的季节里,娱乐圈迎来了一则既意外又甜蜜的爆炸新闻——郭采洁,这位以独特气质与精湛演技著称的才女,悄然间迈入了人生的新阶段,而她的…...
数据结构(Java):力扣牛客 二叉树面试OJ题(一)
👉 目录 👈 1、题一:检查两棵树是否相同 1.1 思路分析 1.2 代码 2、题二:另一棵树的子树 2.1 思路分析 2.2 代码 3、题三:翻转二叉树 3.1 思路分析 3.2 代码 4、题四:判断树是否对称 …...
在国产芯片上实现YOLOv5/v8图像AI识别-【1.3】YOLOv5的介绍及使用(训练、导出)更多内容见视频
本专栏主要是提供一种国产化图像识别的解决方案,专栏中实现了YOLOv5/v8在国产化芯片上的使用部署,并可以实现网页端实时查看。根据自己的具体需求可以直接产品化部署使用。 B站配套视频:https://www.bilibili.com/video/BV1or421T74f 数据…...
逻辑门的题目怎么做?
FPGA语法练习——二输入逻辑门,一起来听~~ FPGA语法练习——二输入逻辑门 题目介绍:F学社-全球FPGA技术提升平台 (zzfpga.com)...
CentOS 7报错:yum命令报错 “ Cannot find a valid baseurl for repo: base/7/x86_6 ”
参考连接: 【linux】CentOS 7报错:yum命令报错 “ Cannot find a valid baseurl for repo: base/7/x86_6 ”_centos linux yum search ifconfig cannot find a val-CSDN博客 Centos7出现问题Cannot find a valid baseurl for repo: base/7/x86_64&…...
51单片机STC89C52RC——18.1 HC-SR04超声波测距
目的/效果 独立按键K1按下后开始测距,LCD显示距离(mm) 一,STC单片机模块 二,HC-SR04 超声波测距 2.1 HC-SR04 简介 HC-SR04超声波测距模块提供2cm~400cm的测距功能,精度达3mm。 2.2 时序 以上时序图表明…...
WordPress与 wp-cron.php
WordPress 傲居全球最流行的内容管理系统(CMS)之位,占据了互联网约43%的网站后台,这主要得益于其直观易用的用户界面以及丰富的扩展功能,特别是为新手用户提供了极大的便利。 然而,在畅享WordPress带来的便…...
bb-------
社保费申报及缴纳...
数据挖掘与分析部分实验与实训项目报告
一、机器学习算法的应用 1. 朴素贝叶斯分类器 相关代码 import pandas as pd from sklearn.model_selection import train_test_split from sklearn.naive_bayes import GaussianNB, MultinomialNB from sklearn.metrics import accuracy_score # 将数据加载到DataFrame中&a…...
Python中使用SpeechLib实现文本转换语音朗读的示例(修正bug)
一、修正SpeechLib的导入包顺序后的代码: from comtypes.client import CreateObjectengine CreateObject(SAPI.SpVoice) stream CreateObject(SAPI.SpFileStream)from comtypes.gen import SpeechLibinfile E:\\语音文档\\易经64卦读音.txt outfile E:\\demo.…...
政安晨【零基础玩转各类开源AI项目】基于Ubuntu系统部署Hallo :针对肖像图像动画的分层音频驱动视觉合成
政安晨的个人主页:政安晨 欢迎 👍点赞✍评论⭐收藏 收录专栏: 零基础玩转各类开源AI项目 希望政安晨的博客能够对您有所裨益,如有不足之处,欢迎在评论区提出指正! 本文目标:在Ubuntu系统上部署Hallo&#x…...
Spring Boot1(概要 入门 Spring Boot 核心配置 YAML JSR303数据校验 )
目录 一、Spring Boot概要 1. SpringBoot优点 2. SpringBoot缺点 二、Spring Boot入门开发 1. 第一个SpringBoot项目 项目创建方式一:使用 IDEA 直接创建项目 项目创建方式二:使用Spring Initializr 的 Web页面创建项目 (了解&#…...
电脑屏幕录制怎么弄?分享3个简单的电脑录屏方法
在信息爆炸的时代,屏幕上的每一个画面都可能成为我们生活中不可或缺的记忆。作为一名年轻男性,我对于录屏软件的需求可以说是既挑剔又实际。今天,我就为大家分享一下我近期体验的三款录屏软件:福昕录屏大师、转转大师录屏大师和OB…...
[10-3]软件I2C读写MPU6050 江协科技学习笔记(16个知识点)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16...
用docker来安装部署freeswitch记录
今天刚才测试一个callcenter的项目,所以尝试安装freeswitch 1、使用轩辕镜像 - 中国开发者首选的专业 Docker 镜像加速服务平台 编辑下面/etc/docker/daemon.json文件为 {"registry-mirrors": ["https://docker.xuanyuan.me"] }同时可以进入轩…...
【HarmonyOS 5 开发速记】如何获取用户信息(头像/昵称/手机号)
1.获取 authorizationCode: 2.利用 authorizationCode 获取 accessToken:文档中心 3.获取手机:文档中心 4.获取昵称头像:文档中心 首先创建 request 若要获取手机号,scope必填 phone,permissions 必填 …...
深度学习水论文:mamba+图像增强
🧀当前视觉领域对高效长序列建模需求激增,对Mamba图像增强这方向的研究自然也逐渐火热。原因在于其高效长程建模,以及动态计算优势,在图像质量提升和细节恢复方面有难以替代的作用。 🧀因此短时间内,就有不…...
Mysql8 忘记密码重置,以及问题解决
1.使用免密登录 找到配置MySQL文件,我的文件路径是/etc/mysql/my.cnf,有的人的是/etc/mysql/mysql.cnf 在里最后加入 skip-grant-tables重启MySQL服务 service mysql restartShutting down MySQL… SUCCESS! Starting MySQL… SUCCESS! 重启成功 2.登…...
计算机基础知识解析:从应用到架构的全面拆解
目录 前言 1、 计算机的应用领域:无处不在的数字助手 2、 计算机的进化史:从算盘到量子计算 3、计算机的分类:不止 “台式机和笔记本” 4、计算机的组件:硬件与软件的协同 4.1 硬件:五大核心部件 4.2 软件&#…...
MySQL的pymysql操作
本章是MySQL的最后一章,MySQL到此完结,下一站Hadoop!!! 这章很简单,完整代码在最后,详细讲解之前python课程里面也有,感兴趣的可以往前找一下 一、查询操作 我们需要打开pycharm …...
02.运算符
目录 什么是运算符 算术运算符 1.基本四则运算符 2.增量运算符 3.自增/自减运算符 关系运算符 逻辑运算符 &&:逻辑与 ||:逻辑或 !:逻辑非 短路求值 位运算符 按位与&: 按位或 | 按位取反~ …...
Copilot for Xcode (iOS的 AI辅助编程)
Copilot for Xcode 简介Copilot下载与安装 体验环境要求下载最新的安装包安装登录系统权限设置 AI辅助编程生成注释代码补全简单需求代码生成辅助编程行间代码生成注释联想 代码生成 总结 简介 尝试使用了Copilot,它能根据上下文补全代码,快速生成常用…...
7种分类数据编码技术详解:从原理到实战
在数据分析和机器学习领域,分类数据(Categorical Data)的处理是一个基础但至关重要的环节。分类数据指的是由有限数量的离散值组成的数据类型,如性别(男/女)、颜色(红/绿/蓝)或产品类…...
