当前位置: 首页 > news >正文

在国产芯片上实现YOLOv5/v8图像AI识别-【1.3】YOLOv5的介绍及使用(训练、导出)更多内容见视频

本专栏主要是提供一种国产化图像识别的解决方案,专栏中实现了YOLOv5/v8在国产化芯片上的使用部署,并可以实现网页端实时查看。根据自己的具体需求可以直接产品化部署使用。

B站配套视频:https://www.bilibili.com/video/BV1or421T74f
在这里插入图片描述

数据训练

上一篇博客里面我们已经获得了标注好的数据以及图片,接下来我们就要开始训练过程。

数据整备阶段

首先在yolov5的目录下创建一个datasets目录,这一步是个人习惯,我们将要训练的数据都会放在这里。

所有的数据需要按照目录规范进行放置,通常train、val的分配比例为8:2,images和labels里面的内容需要对应。
在这里插入图片描述

yaml文件准备阶段

编写数据说明文件和结构说明文件,找到data目录下创建一个yaml文件,此处以我个人创建的举例。

数据yaml文件

可以直接复制目录中的coco128.yaml进行修改,将其中的download部分删掉。然后更具自己数据的存放路径进行配置。
在这里插入图片描述

train 写训练图片的完整路径,经过多次尝试,写相对路径会有问题。
val 写验证图片的完整路径。系统会自动找到对应的labels目录。
test 可以不用写,对训练结果不会有影响。
nc 写你需要识别的数量。
names 写你需要识别的类别,此处循序一定要注意。

# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
# COCO128 dataset https://www.kaggle.com/ultralytics/coco128 (first 128 images from COCO train2017) by Ultralytics
# Example usage: python train.py --data coco128.yaml
# parent
# ├── yolov5
# └── datasets
#     └── coco128  ← downloads here (7 MB)# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
# path: ../datasets/cx  # dataset root dir
train: /app/docs/yolov5_v7.0/datasets/cx/images/train  # train images (relative to 'path') 128 images
val: /app/docs/yolov5_v7.0/datasets/cx/images/train  # val images (relative to 'path') 128 images
test:  # test images (optional)# Classes
nc: 2  # number of classes
names: ['good','bad']  # class names

结构yaml文件

打开model目录,找到下面的yaml文件,此处系统已经默认了一些模型文件。通常不需要进行模型魔改的情况下可以基于pt训练,如果需要魔改模型需要自己重新设置一个yaml文件。此处举例看一下。
在这里插入图片描述
下文是一个修改后的s模型文件,主要修改的就是nc,其他内容如果没有学习过模型魔改就不要动。

# YOLOv5 🚀 by Ultralytics, GPL-3.0 license# Parameters
nc: 2  # number of classes
depth_multiple: 0.33  # model depth multiple
width_multiple: 0.50  # layer channel multiple
anchors:- [10,13, 16,30, 33,23]  # P3/8- [30,61, 62,45, 59,119]  # P4/16- [116,90, 156,198, 373,326]  # P5/32# YOLOv5 v6.0 backbone
backbone:# [from, number, module, args][[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2[-1, 1, Conv, [128, 3, 2]],  # 1-P2/4[-1, 3, C3, [128]],[-1, 1, Conv, [256, 3, 2]],  # 3-P3/8[-1, 6, C3, [256]],[-1, 1, Conv, [512, 3, 2]],  # 5-P4/16[-1, 9, C3, [512]],[-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32[-1, 3, C3, [1024]],[-1, 1, SPPF, [1024, 5]],  # 9]# YOLOv5 v6.0 head
head:[[-1, 1, Conv, [512, 1, 1]],[-1, 1, nn.Upsample, [None, 2, 'nearest']],[[-1, 6], 1, Concat, [1]],  # cat backbone P4[-1, 3, C3, [512, False]],  # 13[-1, 1, Conv, [256, 1, 1]],[-1, 1, nn.Upsample, [None, 2, 'nearest']],[[-1, 4], 1, Concat, [1]],  # cat backbone P3[-1, 3, C3, [256, False]],  # 17 (P3/8-small)[-1, 1, Conv, [256, 3, 2]],[[-1, 14], 1, Concat, [1]],  # cat head P4[-1, 3, C3, [512, False]],  # 20 (P4/16-medium)[-1, 1, Conv, [512, 3, 2]],[[-1, 10], 1, Concat, [1]],  # cat head P5[-1, 3, C3, [1024, False]],  # 23 (P5/32-large)[[17, 20, 23], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)]

启动训练

训练其实很简单,就是要根据自己的实际电脑配置进行训练参数的调整。如果是常规训练参考以下参数就可以了,参数weights和cfg选择一个配置就可以。

python ./train.py --data ./data/coco_bz.yaml --weights ./weights/yolov5s.pt --cfg ./models/yolov5s_bz.yaml --batch-size 48 --epochs 200 --workers 0 --name 754-200 --project yolo5_bz_s

python ./train.py 是官方写好的训练搅拌文件
– data 指向数据整备的yaml文件
–weights 指向已经训练好的模型,这个参数主要两个作用,一个是基于模型结构训练,另一个是训练大型模型异常终端可以接续训练
–cfg 指向模型配置文件
–batch-size 单次训练的的数据量大小,理论是越大越好,要根据实际电脑配置调整,此处注意v5和v8这个参数同一台电脑也不同
–epochs 总过训练多少轮,设置特别大没有太大意义,代码在发现最后几次训练模型没有改进会自动停止
–workers 此项也是根据显卡性能调整,如果不知道怎么设置可以直接设置成0,系统会自动配置
–name 代表本次定义的名字,默认会写exp,重复训练会自动加上后缀
–project 代表本次工程名字,默认会写runs

启动之后会显示以下内容,如果是第一次训练系统会需要下载几个文件可能比较慢,一个是文字格式文件,一个是yolov5模型用来进行数据处理的。

root@935f1467d228:/app/docs/yolov5_v7.0# python ./train.py --data ./data/coco_bz.yaml --cfg ./models/yolov5n_bz.yaml --batch-size 48 --epochs 200 --workers 0 --name 754-200 --project yolo5_bz_ntrain: weights=yolov5s.pt, cfg=./models/yolov5n_bz.yaml, data=./data/coco_bz.yaml, hyp=data/hyps/hyp.scratch-low.yaml, epochs=200, batch_size=48, imgsz=640, rect=False, resume=False, nosave=False, noval=False, noautoanchor=False, noplots=False, evolve=None, bucket=, cache=None, image_weights=False, device=, multi_scale=False, single_cls=False, optimizer=SGD, sync_bn=False, workers=0, project=yolo5_bz_n, name=754-200, exist_ok=False, quad=False, cos_lr=False, label_smoothing=0.0, patience=100, freeze=[0], save_period=-1, seed=0, local_rank=-1, entity=None, upload_dataset=False, bbox_interval=-1, artifact_alias=latest
remote: Enumerating objects: 390, done.
remote: Counting objects: 100% (273/273), done.
remote: Compressing objects: 100% (96/96), done.
remote: Total 390 (delta 204), reused 217 (delta 177), pack-reused 117
Receiving objects: 100% (390/390), 476.92 KiB | 599.00 KiB/s, done.
Resolving deltas: 100% (261/261), completed with 88 local objects.
From https://github.com/ultralytics/yolov5920c721e..8003649c  master                  -> origin/master* [new branch]        refactor-20240717220233 -> origin/refactor-20240717220233* [new branch]        snyk-fix-19a9bd869ca677b68dcdaf5f4affcd24 -> origin/snyk-fix-19a9bd869ca677b68dcdaf5f4affcd24* [new branch]        snyk-fix-f5bfc0187c0599da5db2839fa7a5f8f5 -> origin/snyk-fix-f5bfc0187c0599da5db2839fa7a5f8f5
github: ⚠️ YOLOv5 is out of date by 345 commits. Use `git pull` or `git clone https://github.com/ultralytics/yolov5` to update.
YOLOv5 🚀 v7.0-0-g915bbf29 Python-3.8.12 torch-1.12.0a0+2c916ef CUDA:0 (NVIDIA GeForce RTX 3060, 12022MiB)hyperparameters: lr0=0.01, lrf=0.01, momentum=0.937, weight_decay=0.0005, warmup_epochs=3.0, warmup_momentum=0.8, warmup_bias_lr=0.1, box=0.05, cls=0.5, cls_pw=1.0, obj=1.0, obj_pw=1.0, iou_t=0.2, anchor_t=4.0, fl_gamma=0.0, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, mosaic=1.0, mixup=0.0, copy_paste=0.0
ClearML: run 'pip install clearml' to automatically track, visualize and remotely train YOLOv5 🚀 in ClearML
Comet: run 'pip install comet_ml' to automatically track and visualize YOLOv5 🚀 runs in Comet
TensorBoard: Start with 'tensorboard --logdir yolo5_bz_n', view at http://localhost:6006/from  n    params  module                                  arguments                     0                -1  1      1760  models.common.Conv                      [3, 16, 6, 2, 2]              1                -1  1      4672  models.common.Conv                      [16, 32, 3, 2]                2                -1  1      4800  models.common.C3                        [32, 32, 1]                   3                -1  1     18560  models.common.Conv                      [32, 64, 3, 2]                4                -1  2     29184  models.common.C3                        [64, 64, 2]                   5                -1  1     73984  models.common.Conv                      [64, 128, 3, 2]               6                -1  3    156928  models.common.C3                        [128, 128, 3]                 7                -1  1    295424  models.common.Conv                      [128, 256, 3, 2]              8                -1  1    296448  models.common.C3                        [256, 256, 1]                 9                -1  1    164608  models.common.SPPF                      [256, 256, 5]                 10                -1  1     33024  models.common.Conv                      [256, 128, 1, 1]              11                -1  1         0  torch.nn.modules.upsampling.Upsample    [None, 2, 'nearest']          12           [-1, 6]  1         0  models.common.Concat                    [1]                           13                -1  1     90880  models.common.C3                        [256, 128, 1, False]          14                -1  1      8320  models.common.Conv                      [128, 64, 1, 1]               15                -1  1         0  torch.nn.modules.upsampling.Upsample    [None, 2, 'nearest']          16           [-1, 4]  1         0  models.common.Concat                    [1]                           17                -1  1     22912  models.common.C3                        [128, 64, 1, False]           18                -1  1     36992  models.common.Conv                      [64, 64, 3, 2]                19          [-1, 14]  1         0  models.common.Concat                    [1]                           20                -1  1     74496  models.common.C3                        [128, 128, 1, False]          21                -1  1    147712  models.common.Conv                      [128, 128, 3, 2]              22          [-1, 10]  1         0  models.common.Concat                    [1]                           23                -1  1    296448  models.common.C3                        [256, 256, 1, False]          24      [17, 20, 23]  1      9471  models.yolo.Detect                      [2, [[10, 13, 16, 30, 33, 23], [30, 61, 62, 45, 59, 119], [116, 90, 156, 198, 373, 326]], [64, 128, 256]]
YOLOv5n_bz summary: 214 layers, 1766623 parameters, 1766623 gradients, 4.2 GFLOPsTransferred 57/349 items from yolov5s.pt
AMP: checks passed ✅
optimizer: SGD(lr=0.01) with parameter groups 57 weight(decay=0.0), 60 weight(decay=0.000375), 60 bias
train: Scanning /app/docs/yolov8/ultralytics/datasets/bz_754/labels/train... 754 images, 0 backgrounds, 0 corrupt: 100%|██████████| 754/754 00:00
train: New cache created: /app/docs/yolov8/ultralytics/datasets/bz_754/labels/train.cache
val: Scanning /app/docs/yolov8/ultralytics/datasets/bz_754/labels/val... 200 images, 0 backgrounds, 0 corrupt: 100%|██████████| 200/200 00:00
val: New cache created: /app/docs/yolov8/ultralytics/datasets/bz_754/labels/val.cacheAutoAnchor: 5.75 anchors/target, 1.000 Best Possible Recall (BPR). Current anchors are a good fit to dataset ✅
Plotting labels to yolo5_bz_n/754-2002/labels.jpg... 
Image sizes 640 train, 640 val
Using 0 dataloader workers
Logging results to yolo5_bz_n/754-2002
Starting training for 200 epochs...Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size0/199      5.74G     0.1083     0.1563    0.02792       1076        640:  19%|█▉        | 3/16 00:08

完成训练

完成训练后我们会获得以下目录,其中weights中就有我们最优的模型和最后一次训练模型,通常使用best,其他参数信息我会在视频讲解中和大家说明。视频链接见博客顶部。
在这里插入图片描述

导出模型

执行以下指令就可以导出我们onnx的模型,这里面

python export.py --weights weights/yolov5s.pt --include  onnx --opset 11

使用Netron就可以看到整体模型的内容,Netron的安装地址 https://github.com/lutzroeder/netron
在这里插入图片描述

相关文章:

在国产芯片上实现YOLOv5/v8图像AI识别-【1.3】YOLOv5的介绍及使用(训练、导出)更多内容见视频

本专栏主要是提供一种国产化图像识别的解决方案,专栏中实现了YOLOv5/v8在国产化芯片上的使用部署,并可以实现网页端实时查看。根据自己的具体需求可以直接产品化部署使用。 B站配套视频:https://www.bilibili.com/video/BV1or421T74f 数据…...

逻辑门的题目怎么做?

FPGA语法练习——二输入逻辑门,一起来听~~ FPGA语法练习——二输入逻辑门 题目介绍:F学社-全球FPGA技术提升平台 (zzfpga.com)...

CentOS 7报错:yum命令报错 “ Cannot find a valid baseurl for repo: base/7/x86_6 ”

参考连接: 【linux】CentOS 7报错:yum命令报错 “ Cannot find a valid baseurl for repo: base/7/x86_6 ”_centos linux yum search ifconfig cannot find a val-CSDN博客 Centos7出现问题Cannot find a valid baseurl for repo: base/7/x86_64&…...

51单片机STC89C52RC——18.1 HC-SR04超声波测距

目的/效果 独立按键K1按下后开始测距,LCD显示距离(mm) 一,STC单片机模块 二,HC-SR04 超声波测距 2.1 HC-SR04 简介 HC-SR04超声波测距模块提供2cm~400cm的测距功能,精度达3mm。 2.2 时序 以上时序图表明…...

WordPress与 wp-cron.php

WordPress 傲居全球最流行的内容管理系统(CMS)之位,占据了互联网约43%的网站后台,这主要得益于其直观易用的用户界面以及丰富的扩展功能,特别是为新手用户提供了极大的便利。 然而,在畅享WordPress带来的便…...

bb-------

社保费申报及缴纳...

数据挖掘与分析部分实验与实训项目报告

一、机器学习算法的应用 1. 朴素贝叶斯分类器 相关代码 import pandas as pd from sklearn.model_selection import train_test_split from sklearn.naive_bayes import GaussianNB, MultinomialNB from sklearn.metrics import accuracy_score # 将数据加载到DataFrame中&a…...

Python中使用SpeechLib实现文本转换语音朗读的示例(修正bug)

一、修正SpeechLib的导入包顺序后的代码: from comtypes.client import CreateObjectengine CreateObject(SAPI.SpVoice) stream CreateObject(SAPI.SpFileStream)from comtypes.gen import SpeechLibinfile E:\\语音文档\\易经64卦读音.txt outfile E:\\demo.…...

政安晨【零基础玩转各类开源AI项目】基于Ubuntu系统部署Hallo :针对肖像图像动画的分层音频驱动视觉合成

政安晨的个人主页:政安晨 欢迎 👍点赞✍评论⭐收藏 收录专栏: 零基础玩转各类开源AI项目 希望政安晨的博客能够对您有所裨益,如有不足之处,欢迎在评论区提出指正! 本文目标:在Ubuntu系统上部署Hallo&#x…...

Spring Boot1(概要 入门 Spring Boot 核心配置 YAML JSR303数据校验 )

目录 一、Spring Boot概要 1. SpringBoot优点 2. SpringBoot缺点 二、Spring Boot入门开发 1. 第一个SpringBoot项目 项目创建方式一:使用 IDEA 直接创建项目 项目创建方式二:使用Spring Initializr 的 Web页面创建项目 (了解&#…...

电脑屏幕录制怎么弄?分享3个简单的电脑录屏方法

在信息爆炸的时代,屏幕上的每一个画面都可能成为我们生活中不可或缺的记忆。作为一名年轻男性,我对于录屏软件的需求可以说是既挑剔又实际。今天,我就为大家分享一下我近期体验的三款录屏软件:福昕录屏大师、转转大师录屏大师和OB…...

idea双击没有反应,打不开

问题描述 Error opening zip file or JAR manifest missing : /home/IntelliJ-IDEA/bin/jetbrains-agent.jar解决方案...

关于UniApp使用的个人笔记

UniApp 开发者中心 用于注册应用以及申请对应证书 https://dev.dcloud.net.cn/pages/app/list https://blog.csdn.net/fred_kang/article/details/124988303 下载证书后,获取SHA1关键cmd keytool -list -v -keystore test.keystore Enter keystore password…...

autoware.universe源码略读(3.16)--perception:object_range_splitter

autoware.universe源码略读3.16--perception:object_range_splitter Overviewnode(Class Constructor)ObjectRangeSplitterNode::ObjectRangeSplitterNode(mFunc)ObjectRangeSplitterNode::objectCallback Overview 这里处理的依…...

深度学习落地实战:人脸五官定位检测

前言 大家好,我是机长 本专栏将持续收集整理市场上深度学习的相关项目,旨在为准备从事深度学习工作或相关科研活动的伙伴,储备、提升更多的实际开发经验,每个项目实例都可作为实际开发项目写入简历,且都附带完整的代码与数据集。可通过百度云盘进行获取,实现开箱即用 …...

270-VC709E 基于FMC接口的Virtex7 XC7VX690T PCIeX8 接口卡

一、板卡概述 本板卡基于Xilinx公司的FPGA XC7VX690T-FFG1761 芯片,支持PCIeX8、两组 64bit DDR3容量8GByte,HPC的FMC连接器,板卡支持各种FMC子卡扩展。软件支持windows,Linux操作系统。 二、功能和技术指标: 板卡功…...

【go】Excelize处理excel表 带合并单元格、自动换行与固定列宽的文件导出

文章目录 1 简介2 相关需求与实现2.1 导出带单元格合并的excel文件2.2 导出增加自动换行和固定列宽的excel文件 1 简介 之前整理过使用Excelize导出原始excel文件与增加数据校验的excel导出。【go】Excelize处理excel表 带数据校验的文件导出 本文整理使用Excelize导出带单元…...

uniapp自定义tabBar

uniapp自定义tabBar 1、在登录页中获取该用户所有的权限 getAppFrontMenu().then(res>{if(res.length > 0){// 把所有权限存入缓存中let firstPath res.reverse()[0].path;uni.setStorageSync(qx_data, res);uni.switchTab({url: firstPath,})// 方法二 通过uni.setTabB…...

IDEA2023版本创建JavaWeb项目及配置Tomcat详细步骤!

一、创建JavaWeb项目 第一步 之前的版本能够在创建时直接选成Web项目,但是2023版本在创建项目时没有该选项,需要在创建项目之后才能配置,首先先创建一个项目。 第二步 在创建好的项目中选中项目后(一定要注意选中项目名称然后继…...

WPF中MVVM常用的框架

在WPF开发中,MVVM(Model-View-ViewModel)是一种广泛使用的设计模式,它有助于分离应用程序的用户界面(View)、业务逻辑(Model)和数据表现层(ViewModel)。以下是…...

Linux 文件类型,目录与路径,文件与目录管理

文件类型 后面的字符表示文件类型标志 普通文件:-(纯文本文件,二进制文件,数据格式文件) 如文本文件、图片、程序文件等。 目录文件:d(directory) 用来存放其他文件或子目录。 设备…...

React Native 导航系统实战(React Navigation)

导航系统实战(React Navigation) React Navigation 是 React Native 应用中最常用的导航库之一,它提供了多种导航模式,如堆栈导航(Stack Navigator)、标签导航(Tab Navigator)和抽屉…...

为什么需要建设工程项目管理?工程项目管理有哪些亮点功能?

在建筑行业,项目管理的重要性不言而喻。随着工程规模的扩大、技术复杂度的提升,传统的管理模式已经难以满足现代工程的需求。过去,许多企业依赖手工记录、口头沟通和分散的信息管理,导致效率低下、成本失控、风险频发。例如&#…...

OkHttp 中实现断点续传 demo

在 OkHttp 中实现断点续传主要通过以下步骤完成,核心是利用 HTTP 协议的 Range 请求头指定下载范围: 实现原理 Range 请求头:向服务器请求文件的特定字节范围(如 Range: bytes1024-) 本地文件记录:保存已…...

学习STC51单片机31(芯片为STC89C52RCRC)OLED显示屏1

每日一言 生活的美好,总是藏在那些你咬牙坚持的日子里。 硬件:OLED 以后要用到OLED的时候找到这个文件 OLED的设备地址 SSD1306"SSD" 是品牌缩写,"1306" 是产品编号。 驱动 OLED 屏幕的 IIC 总线数据传输格式 示意图 …...

鱼香ros docker配置镜像报错:https://registry-1.docker.io/v2/

使用鱼香ros一件安装docker时的https://registry-1.docker.io/v2/问题 一键安装指令 wget http://fishros.com/install -O fishros && . fishros出现问题:docker pull 失败 网络不同,需要使用镜像源 按照如下步骤操作 sudo vi /etc/docker/dae…...

【C++从零实现Json-Rpc框架】第六弹 —— 服务端模块划分

一、项目背景回顾 前五弹完成了Json-Rpc协议解析、请求处理、客户端调用等基础模块搭建。 本弹重点聚焦于服务端的模块划分与架构设计,提升代码结构的可维护性与扩展性。 二、服务端模块设计目标 高内聚低耦合:各模块职责清晰,便于独立开发…...

Windows安装Miniconda

一、下载 https://www.anaconda.com/download/success 二、安装 三、配置镜像源 Anaconda/Miniconda pip 配置清华镜像源_anaconda配置清华源-CSDN博客 四、常用操作命令 Anaconda/Miniconda 基本操作命令_miniconda创建环境命令-CSDN博客...

为什么要创建 Vue 实例

核心原因:Vue 需要一个「控制中心」来驱动整个应用 你可以把 Vue 实例想象成你应用的**「大脑」或「引擎」。它负责协调模板、数据、逻辑和行为,将它们变成一个活的、可交互的应用**。没有这个实例,你的代码只是一堆静态的 HTML、JavaScript 变量和函数,无法「活」起来。 …...

从“安全密码”到测试体系:Gitee Test 赋能关键领域软件质量保障

关键领域软件测试的"安全密码":Gitee Test如何破解行业痛点 在数字化浪潮席卷全球的今天,软件系统已成为国家关键领域的"神经中枢"。从国防军工到能源电力,从金融交易到交通管控,这些关乎国计民生的关键领域…...