机器学习入门【经典的CIFAR10分类】
模型
神经网络采用下图

我使用之后发现迭代多了之后一直最高是正确率65%左右,然后我自己添加了一些Relu激活函数和正则化,现在正确率可以有80%左右。
模型代码
import torch
from torch import nnclass YmModel(nn.Module):def __init__(self):super(YmModel, self).__init__()self.model = nn.Sequential(nn.Conv2d(3, 32, kernel_size=5, stride=1, padding=2),nn.BatchNorm2d(32),nn.ReLU(),nn.MaxPool2d(2),nn.Conv2d(32, 32, kernel_size=5, stride=1, padding=2),nn.BatchNorm2d(32),nn.ReLU(),nn.MaxPool2d(2),nn.Conv2d(32, 64, kernel_size=5, stride=1, padding=2),nn.BatchNorm2d(64),nn.ReLU(),nn.MaxPool2d(2),nn.Flatten(),nn.Linear(64 * 4 * 4, 512),nn.ReLU(),nn.Dropout(0.5),nn.Linear(512, 64),nn.ReLU(),nn.Dropout(0.5),nn.Linear(64, 10),)def forward(self, x):return self.model(x)
训练
有一点要说明的是,数据集中并没有验证集,你可以从训练集扣个1w张出来
import torch
import torchvision
from torchvision import transformsfrom models.YMModel import YmModel
from torch.utils.data import DataLoadertransform_train = transforms.Compose([transforms.RandomCrop(32, padding=4),transforms.RandomHorizontalFlip(),transforms.ToTensor(),transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
])# 数据集
train_dataset = torchvision.datasets.CIFAR10(root='./data', train=True, transform=transform_train, download=True)
test_dataset = torchvision.datasets.CIFAR10(root='./data', train=False, transform=torchvision.transforms.ToTensor(), download=True)train_loader = DataLoader(train_dataset, batch_size=64, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=64)
print(len(train_loader), len(test_loader))print(len(train_dataset), len(test_dataset))model = YmModel()
#迭代次数
train_epochs = 300
#优化器
optimizer = torch.optim.Adam(model.parameters(), lr=1e-3)
# 损失函数
loss_fn = torch.nn.CrossEntropyLoss()train_epochs_step = 0
best_accuracy = 0.for epoch in range(train_epochs):model.train()print(f'Epoch is {epoch}')for images, labels in train_loader:outputs = model(images)loss = loss_fn(outputs, labels)optimizer.zero_grad()loss.backward()optimizer.step()if train_epochs_step % 100 == 0:print(f'Train_Epoch is {train_epochs_step}\t Loss is {loss.item()}')train_epochs_step += 1train_epochs_step = 0with torch.no_grad():loss_running_total = 0.acc_running_total = 0.for images, labels in test_loader:outputs = model(images)loss = loss_fn(outputs, labels)loss_running_total += loss.item()acc_running_total += (outputs.argmax(1) == labels).sum().item()acc_running_total /= len(test_dataset)if acc_running_total > best_accuracy:best_accuracy = acc_running_totaltorch.save(model.state_dict(), './best_model.pth')print('accuracy is {}'.format(acc_running_total))print('total loss is {}'.format(loss_running_total))print('best accuracy is {}'.format(best_accuracy))
验证
import osimport numpy as np
import torch
import torchvision
from PIL import Image
from torch.utils.data import DataLoader
from torchvision import transformsfrom models.TestColor import TextColor
from models.YMModel import YmModeltest_dataset = torchvision.datasets.CIFAR10(root='./data', train=False, transform=torchvision.transforms.ToTensor(), download=True)
test_loader = DataLoader(test_dataset, batch_size=64, shuffle=False)classes = ('airplane', 'automobile', 'bird', 'cat', 'deer','dog', 'frog', 'horse', 'ship', 'truck')
model = YmModel()model.load_state_dict(torch.load('best_model.pth'))model.eval()
with torch.no_grad():correct = 0.for images, labels in test_loader:outputs = model(images)_, predicted = torch.max(outputs, 1)correct += (predicted == labels).sum().item()print('Accuracy : {}'.format(100 * correct / len(test_dataset)))
folder_path = './images'
files_names = os.listdir(folder_path)
transform_test = transforms.Compose([transforms.Resize((32, 32)),transforms.ToTensor(),
])for file_name in files_names:image_path = os.path.join(folder_path, file_name)image = Image.open(image_path)image = transform_test(image)image = np.reshape(image, [1, 3, 32, 32])output = model(image)_, predicted = torch.max(output, 1)source_name = os.path.splitext(file_name)[0]predicted_class = classes[predicted.item()]colors = TextColor.GREEN if predicted_class == source_name else TextColor.REDprint(f"Source is {TextColor.BLUE}{source_name}{TextColor.RESET}, and predicted is {colors}{predicted_class}{TextColor.RESET}")
结果
TextColor是自定义字体颜色的类,
image中就是自己的图片。
结果如下:测试集的正确率有82.7%

相关文章:
机器学习入门【经典的CIFAR10分类】
模型 神经网络采用下图 我使用之后发现迭代多了之后一直最高是正确率65%左右,然后我自己添加了一些Relu激活函数和正则化,现在正确率可以有80%左右。 模型代码 import torch from torch import nnclass YmModel(nn.Module):def __init__(self):super(…...
01 安装
安装和卸载中,用户全部切换为root,一旦安装,普通用户也能使用 初期不进行用户管理,全部用root进行,使用mysql语句 1. 卸载内置环境 检查是否有mariadb存在,存在走a部分卸载 ps axj | grep mysql ps ajx |…...
AI 模型本地推理 - YYPOLOE - Python - Windows - GPU - 吸烟检测(目标检测)- 有配套资源直接上手实现
Python 运行 - GPU 推理 - windows 环境准备python 代码 环境准备 FastDeploy预编译库下载 conda config --add channels conda-forge && conda install cudatoolkit11.2 cudnn8.2 pip install fastdeploy_gpu_python-0.0.0-cp38-cp38-win_amd64.whlpython 代码 impo…...
全国媒体邀约,主流媒体到场出席采访报道
传媒如春雨,润物细无声,大家好,我是51媒体网胡老师。 全国媒体邀约,确保主流媒体到场出席采访报道,可以带来一系列的好处,这些好处不仅能够增强活动的可见度,还能对品牌或组织的长期形象产生积…...
计算机视觉8 图像增广
图像增广(image augmentation)是通过对训练图像进行一系列随机改变,从而产生相似但又不同的训练样本的技术。 图像增广有以下两个主要作用: 扩大训练数据集的规模;随机改变训练样本可以降低模型对某些属性的依赖&#…...
Transformer中的自注意力是怎么实现的?
在Transformer模型中,自注意力(Self-Attention)是核心组件,用于捕捉输入序列中不同位置之间的关系。自注意力机制通过计算每个标记与其他所有标记之间的注意力权重,然后根据这些权重对输入序列进行加权求和,…...
LabVIEW鼠标悬停在波形图上的曲线来自动显示相应点的坐标
步骤 创建事件结构: 打开LabVIEW,创建一个新的VI。 在前面板上添加一个Waveform Graph控件。 在后面板上添加一个While Loop和一个事件结构(Event Structure)。 配置事件结构,选择Waveform Graph作为事件源…...
操作系统发展简史(Unix/Linux 篇 + DOS/Windows 篇)+ Mac 与 Microsoft 之风云争霸
操作系统发展简史(Unix/Linux 篇) 说到操作系统,大家都不会陌生。我们天天都在接触操作系统 —— 用台式机或笔记本电脑,使用的是 windows 和 macOS 系统;用手机、平板电脑,则是 android(安卓&…...
钡铼分布式 IO 系统 OPC UA边缘计算耦合器BL205
深圳钡铼技术推出的BL205耦合器支持OPC UA Server功能,以服务器形式对外提供数据。符合IEC 62541工业自动化统一架构通讯标准,数据可以选择加密(X.509证书)、身份验证方式传送。 安全策略支持basic128rsa15、basic256、basic256s…...
实现了一个心理测试的小程序,微信小程序学习使用问题总结
1. 如何在跳转页面中传递参数 ,在 onLoad 方法中通过 options 接收 2. radio 如何获取选中的值? bindchange 方法 参数e, e.detail.value 。 如果想要获取其他属性,使用data-xx 指定,然后 e.target.dataset.xx 获取。 3. 不刷…...
vue是如何进行监听数据变化的?vue2和vue3分别是什么?vue3为什么要更换?
Vue如何进行监听数据变化的? Vue.js 通过其响应式系统来监听数据变化。这个系统允许你声明式地将数据和 DOM 绑定,一旦数据发生变化,相关的 DOM 将自动更新。Vue 使用以下机制来实现数据的监听和响应: 响应式数据:在 …...
数据结构day3
一、思维导图 二、 #include "seqlist.h"#include<myhead.h> int main(int argc, const char *argv[]) {//创建一个顺序表SeqListPtr L list_create();if(NULL L){return -1;}//调用添加函数list_add(L,123);list_add(L,435);list_add(L,856);list_add(L,65…...
免费的数字孪生平台助力产业创新,让新质生产力概念有据可依
关于新质生产力的概念,在如今传统企业现代化发展中被反复提及。 那到底什么是新质生产力?它与哪些行业存在联系,我们又该使用什么工具来加快新质生产力的发展呢?今天我将介绍一款为发展新质生产力而量身定做的数字孪生工具。 新…...
mtsys2 编译 qemu 记录
参考链接 下载 MSYS2 MSYS2 MSYS2 换源 进入目录\msys64\etc\pacman.d, 在文件mirrorlist.msys的前面插入 Server http://mirrors.ustc.edu.cn/msys2/msys/$arch在文件mirrorlist.mingw32的前面插入 Server http://mirrors.ustc.edu.cn/msys2/mingw/i686在…...
【Python数据分析】数据分析三剑客:NumPy、SciPy、Matplotlib中常用操作汇总
文章目录 NumPy常见操作汇总SciPy常见操作汇总Matplotlib常见操作汇总官方文档链接NumPy常见操作汇总 在Python的NumPy库中,有许多常用的知识点,这里列出了一些核心功能和常见操作: 类别函数或特性描述基础操作np.array创建数组np.shape获取数组形状np.dtype查看数组数据类…...
STM32智能家居电力管理系统教程
目录 引言环境准备智能家居电力管理系统基础代码实现:实现智能家居电力管理系统 4.1 数据采集模块 4.2 数据处理与控制模块 4.3 通信与网络系统实现 4.4 用户界面与数据可视化应用场景:电力管理与优化问题解决方案与优化收尾与总结 1. 引言 智能家居电…...
C# 邮件发送
创建邮件类 // 有static时候 类名,方法名// MyEmail.方法名/// <summary>/// 给目标发送邮箱/// </summary>/// <param name"maiTo"></param>/// <param name"title"></param>/// <param name"con…...
Kotlin 协程简化回调
suspend 和 suspendCoroutine 实现 suspendCoroutine函数必须在协程作用域或挂起函数中才能调用,它接收一个Lambda表达式参数,主要作用是将当前协程立即挂起,然后在一个普通的线程中执行Lambda表达式中的代码。Lambda表达式的参数列表上会传…...
帝王蝶算法(EBOA)及Python和MATLAB实现
帝王蝶算法(Emperor Butterfly Optimization Algorithm,简称EBOA)是一种启发式优化算法,灵感来源于蝴蝶群体中的帝王蝶(Emperor Butterfly)。该算法模拟了帝王蝶群体中帝王蝶和其他蝴蝶之间的交互行为&…...
【学术会议征稿】第六届信息与计算机前沿技术国际学术会议(ICFTIC 2024)
第六届信息与计算机前沿技术国际学术会议(ICFTIC 2024) 2024 6th International Conference on Frontier Technologies of Information and Computer 第六届信息与计算机前沿技术国际学术会议(ICFTIC 2024)将在中国青岛举行,会期是2024年11月8-10日,为…...
有限自动机到正规文法转换器v1.0
1 项目简介 这是一个功能强大的有限自动机(Finite Automaton, FA)到正规文法(Regular Grammar)转换器,它配备了一个直观且完整的图形用户界面,使用户能够轻松地进行操作和观察。该程序基于编译原理中的经典…...
Typeerror: cannot read properties of undefined (reading ‘XXX‘)
最近需要在离线机器上运行软件,所以得把软件用docker打包起来,大部分功能都没问题,出了一个奇怪的事情。同样的代码,在本机上用vscode可以运行起来,但是打包之后在docker里出现了问题。使用的是dialog组件,…...
Python基于历史模拟方法实现投资组合风险管理的VaR与ES模型项目实战
说明:这是一个机器学习实战项目(附带数据代码文档),如需数据代码文档可以直接到文章最后关注获取。 1.项目背景 在金融市场日益复杂和波动加剧的背景下,风险管理成为金融机构和个人投资者关注的核心议题之一。VaR&…...
站群服务器的应用场景都有哪些?
站群服务器主要是为了多个网站的托管和管理所设计的,可以通过集中管理和高效资源的分配,来支持多个独立的网站同时运行,让每一个网站都可以分配到独立的IP地址,避免出现IP关联的风险,用户还可以通过控制面板进行管理功…...
(一)单例模式
一、前言 单例模式属于六大创建型模式,即在软件设计过程中,主要关注创建对象的结果,并不关心创建对象的过程及细节。创建型设计模式将类对象的实例化过程进行抽象化接口设计,从而隐藏了类对象的实例是如何被创建的,封装了软件系统使用的具体对象类型。 六大创建型模式包括…...
怎么让Comfyui导出的图像不包含工作流信息,
为了数据安全,让Comfyui导出的图像不包含工作流信息,导出的图像就不会拖到comfyui中加载出来工作流。 ComfyUI的目录下node.py 直接移除 pnginfo(推荐) 在 save_images 方法中,删除或注释掉所有与 metadata …...
Scrapy-Redis分布式爬虫架构的可扩展性与容错性增强:基于微服务与容器化的解决方案
在大数据时代,海量数据的采集与处理成为企业和研究机构获取信息的关键环节。Scrapy-Redis作为一种经典的分布式爬虫架构,在处理大规模数据抓取任务时展现出强大的能力。然而,随着业务规模的不断扩大和数据抓取需求的日益复杂,传统…...
HTML前端开发:JavaScript 获取元素方法详解
作为前端开发者,高效获取 DOM 元素是必备技能。以下是 JS 中核心的获取元素方法,分为两大系列: 一、getElementBy... 系列 传统方法,直接通过 DOM 接口访问,返回动态集合(元素变化会实时更新)。…...
论文阅读:Matting by Generation
今天介绍一篇关于 matting 抠图的文章,抠图也算是计算机视觉里面非常经典的一个任务了。从早期的经典算法到如今的深度学习算法,已经有很多的工作和这个任务相关。这两年 diffusion 模型很火,大家又开始用 diffusion 模型做各种 CV 任务了&am…...
Linux安全加固:从攻防视角构建系统免疫
Linux安全加固:从攻防视角构建系统免疫 构建坚不可摧的数字堡垒 引言:攻防对抗的新纪元 在日益复杂的网络威胁环境中,Linux系统安全已从被动防御转向主动免疫。2023年全球网络安全报告显示,高级持续性威胁(APT)攻击同比增长65%,平均入侵停留时间缩短至48小时。本章将从…...
