【算法基础】Dijkstra 算法
定义:
- g [ i ] [ j ] g[i][j] g[i][j] 表示 v i v_i vi 到 $v_j $的边权重,如果没有连接,则 g [ i ] [ j ] = ∞ g[i][j] = \infty g[i][j]=∞
- d i s [ i ] dis[i] dis[i] 表示 v k v_k vk 到节点 v i v_i vi 的最短长度, d i s [ k ] = 0 , d i s [ i ] = ∞ , i ≠ k dis[k] = 0, dis[i]=\infty, i \neq k dis[k]=0,dis[i]=∞,i=k.
目标:
- 计算出 d i s dis dis 数组,也就是任何点到 v k v_k vk 的距离。
step1 : 更新 v k v_k vk 的所有邻居节点 v y v_y vy的最短路径; 即: d i s [ y ] = g [ k ] [ y ] dis[y] = g[k][y] dis[y]=g[k][y]
step2 : 找出 这些邻居节点中路径最短的 d i s [ i 1 ] dis[i1] dis[i1]. 此时 d i s [ i 1 ] dis[i1] dis[i1] 一定已经是最短的了,可以用反证法来证明。
step3 : 找出 v i 1 v_{i1} vi1 的邻居节点 y ′ y' y′, 如果 d i s [ i 1 ] + g [ i 1 ] [ y ′ ] < d i s [ y ′ ] dis[i1]+g[i1][y'] < dis[y'] dis[i1]+g[i1][y′]<dis[y′], 则更新 d i s [ y ′ ] = d i s [ i 1 ] + g [ i 1 ] [ y ′ ] dis[y'] =dis[i1]+g[i1][y'] dis[y′]=dis[i1]+g[i1][y′], 否则不更新。
step4 : 找出 k , i 1 k,i1 k,i1之外的 d i s [ i ] dis[i] dis[i] 最小的值 d i s [ i 2 ] dis[i2] dis[i2], 重复之前的更新过程,知道取完所有点为止。
code :
leecode 743
朴素写法:
class Solution:def networkDelayTime(self, times: List[List[int]], n: int, k: int) -> int:g = [[inf for _ in range(n)] for _ in range(n)] # 邻接矩阵for x, y, d in times:g[x - 1][y - 1] = ddis = [inf] * nans = dis[k - 1] = 0 # 起始节点done = [False] * n #是否确定为最短while True:x = -1# 找到最短的 done 是用来排除已经确定的那些点的。完成后x 记录当前最短距离的那个点。# 起始为 kfor i, ok in enumerate(done):if not ok and (x < 0 or dis[i] < dis[x]):x = i# 没有找到,也就是所有点已经全部确定后。if x < 0:return ans # 最后一次算出的最短路就是最大的# 无法到达if dis[x] == inf: # 有节点无法到达return -1# 因为每次都是递增的,而答案是要求最大的最短路径。ans = dis[x] # 求出的最短路会越来越大done[x] = True # 最短路长度已确定(无法变得更小)# 更新 x 的邻居节点的最短距离。for y, d in enumerate(g[x]):# 更新 x 的邻居的最短路dis[y] = min(dis[y], dis[x] + d)
堆优化 Dijkstra:
class Solution:def networkDelayTime(self, times: List[List[int]], n: int, k: int) -> int:g = [[] for _ in range(n)] # 邻接表for x, y, d in times:g[x - 1].append((y - 1, d))dis = [inf] * ndis[k - 1] = 0h = [(0, k - 1)] # 二元组 (dis[i], i)while h:dx, x = heappop(h) # 找到最短路径的 x 和其相应的 disif dx > dis[x]: # x 之前出堆过,continue# 这里continue 是因为 对于一个x 由于更新了多次dis, 堆中科恩那个存在多个 dx, 对于那些较大的dx, 不再使用的意思。# 更新邻居for y, d in g[x]:new_dis = dx + dif new_dis < dis[y]:dis[y] = new_dis # 更新 x 的邻居的最短路heappush(h, (new_dis, y))mx = max(dis)return mx if mx < inf else -1
相关文章:
【算法基础】Dijkstra 算法
定义: g [ i ] [ j ] g[i][j] g[i][j] 表示 v i v_i vi 到 $v_j $的边权重,如果没有连接,则 g [ i ] [ j ] ∞ g[i][j] \infty g[i][j]∞ d i s [ i ] dis[i] dis[i] 表示 v k v_k vk 到节点 v i v_i vi 的最短长度, …...

使用 Flask 3 搭建问答平台(三):注册页面模板渲染
前言 前端文件下载 链接https://pan.baidu.com/s/1Ju5hhhhy5pcUMM7VS3S5YA?pwd6666%C2%A0 知识点 1. 在路由中渲染前端页面 2. 使用 JinJa 2 模板实现前端代码复用 一、auth.py from flask import render_templatebp.route(/register, methods[GET]) def register():re…...

pycharm如何debug for循环里面的错误值
一般debug时,在for循环里面的话,需要自己一步一步点。如果循环几百次那种就比较麻烦。此时可以采用try except的方式来解决 例子如下 #ptyhon debug for循环的代码 num[1,2,3,s,4] ans0 for i in num:try:ansiexcept:print(错误) print(ans) 结果如下&a…...

解决网页中的 video 标签在移动端浏览器(如百度访问网页)视频脱离文档流播放问题
问题现象 部分浏览器视频脱离文档流,滚动时,视频是悬浮出来,在顶部播放 解决方案 添加下列属性,可解决大部分浏览器的脱离文档流的问题 <videowebkit-playsinline""playsInlinex5-playsinlinet7-video-player-t…...
.Net--CLS,CTS,CLI,BCL,FCL
1.什么是CLS? 所以.NET专门为此参考每种语言(例如C# ,VB,F#)并找出了语言间的共性,然后定义了一组规则,开发者都遵守这个规则来编码,那么代码就能被任意.NET平台支持的语言所通用。 而与其说是规则&#x…...

Stable Diffusion:质量高画风清新细节丰富的二次元大模型二次元插图
今天和大家分享一个基于Pony模型训练的二次元模型:二次元插图。关于该模型有4个不同的分支版本。 1.5版本:loar模型,推荐底模型niji-动漫二次元4.5。 xl版本:SDXL模型版本 mix版本:光影减弱,减少SDXL版本…...
数读MEME之争:以太坊获更高价值共识,抢占热点成Solana流量密码
在当前显著的加密牛市中,以太坊和Solana之间的竞争不仅在币价表现上显而易见,生态发展方面也备受关注。特别是在这轮MEME行情中,双方阵营的MEME代币呈现出不同的特点和趋势。 市场表现对比 以太坊的优势: 市场份额和认可度更高&…...
python的with语句
1.with语句的作用 在 Python 中,with 语句用于创建一个上下文管理器,以更简洁和安全的方式管理资源。 其主要优点是可以确保在代码块执行完毕后,相关资源能够被正确释放或清理,即使在代码块内部发生了异常。 以下是一个使用 with…...

Selenium原理深度解析
在自动化测试领域,Selenium无疑是最受欢迎和广泛使用的工具之一。它支持多种浏览器和操作系统,为开发人员和测试人员提供了强大的自动化测试解决方案。本文将深入探讨Selenium的工作原理,包括其架构、核心组件、执行流程以及它在自动化测试中…...

算法复杂度<数据结构 C版>
什么是算法复杂度? 简单来说算法复杂度是用来衡量一个算法的优劣的,一个程序在运行时,对运行时间和运行空间有要求,即时间复杂度和空间复杂度。 目录 什么是算法复杂度? 大O的渐近表达式 时间复杂度示例 空间复杂度…...

【XSS】
文章目录 0x01 简介0x02 XSS Payload用法XSS攻击平台及调试JavaScript 0x03 XSS绕过XSS漏洞防御策略 跨站脚本攻击,Cross Site Script。(重点在于脚本script) 有关XSS可以造成的 危害,见 0x02 XSS Payload用法 分类 反射型、存储…...

Go网络编程-RPC程序设计
gRPC 通信 RPC 介绍 RPC, Remote Procedure Call,远程过程调用。与 HTTP 一致,也是应用层协议。该协议的目标是实现:调用远程过程(方法、函数)就如调用本地方法一致。 如图所示: 说明: Servi…...
Linux 性能优化:轻松入门
文章目录 前言一、磁盘性能优化1、 磁盘 RAID 模式选择2、文件系统优化 二、优化 CPU1、性能监控 :2、进程优先级调整 :3、进程与 CPU 绑定 : 三、优化内存四、网络性能优化1、调整 TCP 缓冲区大小2、修改系统级别的文件描述符的数量3、调整 …...

C++相关概念和易错语法(22)(final、纯虚函数、继承多态难点)
1.final final在继承和多态中都可以使用,在继承中是指不想将自己被继承,在多态中是指不想该函数被重写,比较简单,下面是一些使用例子。 2.纯虚函数 当我们需要抽象一个类的时候,我们就需要用到纯虚函数。所谓抽象的类…...

状态管理的艺术:探索Flutter的Provider库
状态管理的艺术:探索Flutter的Provider库 前言 上一篇文章中,我们详细介绍了 Flutter 应用中的状态管理,以及 StatefulWidget 和 setState 的使用。 本篇我们继续介绍另一个实现状态管理的方式:Provider。 Provider优缺点 基…...

玩转HarmonyOS NEXT之IM应用首页布局
本文从目前流行的垂类市场中,选择即时通讯应用作为典型案例详细介绍HarmonyOS NEXT的各类布局在实际开发中的综合应用。即时通讯应用的核心功能为用户交互,主要包含对话聊天、通讯录,社交圈等交互功能。 应用首页 创建一个包含一列的栅格布…...

GPT-4o大语言模型优化、本地私有化部署、从0-1搭建、智能体构建
原文链接:GPT-4o大语言模型优化、本地私有化部署、从0-1搭建、智能体构建https://mp.weixin.qq.com/s?__bizMzUzNTczMDMxMg&mid2247608565&idx3&snd4e9d447efd82e8dd8192f7573886dab&chksmfa826912cdf5e00414e01626b52bab83a96199a6bf69cbbef7f7fe…...

记录些MySQL题集(4)
1、数据库的三范式是什么? 第一范式:列不可再分 第二范式:在第一范式的基础上,要求数据库表中的所有非主键列完全依赖于主键,而不是仅依赖于主键的一部分 第三范式:满足第二范式的基础上,所有…...

pdf提取其中一页怎么操作?提取PDF其中一页的方法
pdf提取其中一页怎么操作?需要从一个PDF文件中提取特定页码的操作通常是在处理文档时常见的需求。这种操作允许用户选择性地获取所需的信息,而不必操作整个文档。通过选择性提取页面,你可以更高效地管理和利用PDF文件的内容,无论是…...
godot使用ws
go服务端 package mainimport ("encoding/json""fmt""github.com/gorilla/websocket""net/http" )var upgrader websocket.Upgrader{ReadBufferSize: 1024,WriteBufferSize: 1024, }// 处理函数 func handleWebSocket(w http.Respo…...

超短脉冲激光自聚焦效应
前言与目录 强激光引起自聚焦效应机理 超短脉冲激光在脆性材料内部加工时引起的自聚焦效应,这是一种非线性光学现象,主要涉及光学克尔效应和材料的非线性光学特性。 自聚焦效应可以产生局部的强光场,对材料产生非线性响应,可能…...

8k长序列建模,蛋白质语言模型Prot42仅利用目标蛋白序列即可生成高亲和力结合剂
蛋白质结合剂(如抗体、抑制肽)在疾病诊断、成像分析及靶向药物递送等关键场景中发挥着不可替代的作用。传统上,高特异性蛋白质结合剂的开发高度依赖噬菌体展示、定向进化等实验技术,但这类方法普遍面临资源消耗巨大、研发周期冗长…...
Cesium1.95中高性能加载1500个点
一、基本方式: 图标使用.png比.svg性能要好 <template><div id"cesiumContainer"></div><div class"toolbar"><button id"resetButton">重新生成点</button><span id"countDisplay&qu…...

2.Vue编写一个app
1.src中重要的组成 1.1main.ts // 引入createApp用于创建应用 import { createApp } from "vue"; // 引用App根组件 import App from ./App.vue;createApp(App).mount(#app)1.2 App.vue 其中要写三种标签 <template> <!--html--> </template>…...
sqlserver 根据指定字符 解析拼接字符串
DECLARE LotNo NVARCHAR(50)A,B,C DECLARE xml XML ( SELECT <x> REPLACE(LotNo, ,, </x><x>) </x> ) DECLARE ErrorCode NVARCHAR(50) -- 提取 XML 中的值 SELECT value x.value(., VARCHAR(MAX))…...
数据库分批入库
今天在工作中,遇到一个问题,就是分批查询的时候,由于批次过大导致出现了一些问题,一下是问题描述和解决方案: 示例: // 假设已有数据列表 dataList 和 PreparedStatement pstmt int batchSize 1000; // …...

深入解析C++中的extern关键字:跨文件共享变量与函数的终极指南
🚀 C extern 关键字深度解析:跨文件编程的终极指南 📅 更新时间:2025年6月5日 🏷️ 标签:C | extern关键字 | 多文件编程 | 链接与声明 | 现代C 文章目录 前言🔥一、extern 是什么?&…...
【HTTP三个基础问题】
面试官您好!HTTP是超文本传输协议,是互联网上客户端和服务器之间传输超文本数据(比如文字、图片、音频、视频等)的核心协议,当前互联网应用最广泛的版本是HTTP1.1,它基于经典的C/S模型,也就是客…...
Typeerror: cannot read properties of undefined (reading ‘XXX‘)
最近需要在离线机器上运行软件,所以得把软件用docker打包起来,大部分功能都没问题,出了一个奇怪的事情。同样的代码,在本机上用vscode可以运行起来,但是打包之后在docker里出现了问题。使用的是dialog组件,…...
SQL慢可能是触发了ring buffer
简介 最近在进行 postgresql 性能排查的时候,发现 PG 在某一个时间并行执行的 SQL 变得特别慢。最后通过监控监观察到并行发起得时间 buffers_alloc 就急速上升,且低水位伴随在整个慢 SQL,一直是 buferIO 的等待事件,此时也没有其他会话的争抢。SQL 虽然不是高效 SQL ,但…...