当前位置: 首页 > news >正文

graham 算法计算平面投影点集的凸包

文章目录

  • 向量的内积(点乘)、外积(叉乘)
    • 确定旋转方向
    • numpy 的 cross 和 outer
      • `np.inner` 向量与矩阵计算示例
      • `np.outer` 向量与矩阵计算示例
  • python 示例
    • 生成样例散点数据图
    • 显示按极角排序的结果
    • 根据排序点计算向量转向并连成凸包
  • 基本思路

将三维空间中的点云使用 BEV 的方式多视角投影到某个平面之后,可能需要用到该平面投影图(光栅化之前)的点集的凸包,所以这里记录一下常见的 graham 凸包算法。

向量的内积(点乘)、外积(叉乘)

graham 算法模拟最外层点集包围的过程的关键思想是使用两个向量之间的外积来判断下一条连线的转角,如果向外拐了,那说明当前基点在本次连线之后会成为一块凹陷,注意“凸包”的定义,每个顶角的角度都小于 18 0 ∘ 180^\circ 180 才叫 “凸” ,如果有一个内凹顶点,那么它的内角是大于 18 0 ∘ 180^\circ 180 的,可以确定,它应该是包含在实际的最终计算出来的理想凸包之内才对,这个时候就需要调整连线的基点为上一个基点。

在二维平面上,叉积的结果与向量的顺时针或逆时针旋转方向有关。具体来说:

  • 对于二维平面上的两个向量 u = ( x 1 , y 1 ) u=(x_1,y_1) u=(x1,y1) v = ( x 2 , y 2 ) v=(x_2, y_2) v=(x2,y2) ,它们的叉积可以使用一个标量值来表示 u × v = x 1 y 2 − y 1 x 2 u\times v = x_1y_2 - y_1x_2 u×v=x1y2y1x2
  • 这个标量值表示了这两个向量所定义的平行四边形的有向面积,也可以用来判定向量的旋转方向。

确定旋转方向

  • 正值:当 叉积 的值为正时,向量 v v v 从向量 u u u 逆时针旋转到达 v v v,也就是说, v v v u u u 的左侧。
  • 负值:当 叉积 的值为负时,向量 v v v 从向量 u u u 顺时针旋转到达 v v v,也就是说, v v v u u u 的右侧。
  • 零值:当 叉积 的值为零时,两个向量是共线的,即它们之间没有旋转,或者说它们之间的旋转角度是 0 ∘ 0^\circ 0∘ 或 18 0 ∘ 180^\circ 180

numpy 的 cross 和 outer

示例 python 代码:

a = np.array([1, 1])
b = np.array([0, 1])np.cross(a, b)

输出结果为 1 ,代表由向量 a 转动到向量 b 的转角是逆时针,符合右手螺旋。

numpy 库中有两个函数分别是 np.cross(a,b)np.outer(a,b) ,其中 np.cross 是我们常用所说的外积(叉乘),而 np.outer 实际的计算结果定义是一个张量中的每个元素对另一个张量中的每个元素的乘积。

np.inner 向量与矩阵计算示例

# Python Program illustrating 
# numpy.inner() method 
import numpy as np # Vectors 
a = np.array([2, 6]) 
b = np.array([3, 10]) 
print("Vectors :") 
print("a = ", a) 
print("\nb = ", b) # Inner Product of Vectors 
print("\nInner product of vectors a and b =") 
print(np.inner(a, b)) print("---------------------------------------") # Matrices 
x = np.array([[2, 3, 4], [3, 2, 9]]) 
y = np.array([[1, 5, 0], [5, 10, 3]]) 
print("\nMatrices :") 
print("x =", x) 
print("\ny =", y) # Inner product of matrices 
print("\nInner product of matrices x and y =") 
print(np.inner(x, y)) 

输出:

Vectors :
a =  [2  6]
b =  [3 10]Inner product of vectors a and b =
66
---------------------------------------Matrices :
x = [[2 3 4][3 2 9]]y = [[ 1  5  0][ 5 10  3]]Inner product of matrices x and y =
[[17 52][13 62]]

可以看到对于向量来说,外积在 numpy 中的 outer 不是我们说常说的叉乘计算方式,而是一个向量中的每个元素对另一个向量中的每个元素的乘积结果。

np.outer 向量与矩阵计算示例

# Python Program illustrating  
# numpy.outer() method  
import numpy as np # Vectors 
a = np.array([2, 6]) 
b = np.array([3, 10]) 
print("Vectors :") 
print("a = ", a) 
print("\nb = ", b) # Outer product of vectors  
print("\nOuter product of vectors a and b =") 
print(np.outer(a, b)) print("------------------------------------") # Matrices 
x = np.array([[3, 6, 4], [9, 4, 6]]) 
y = np.array([[1, 15, 7], [3, 10, 8]]) 
print("\nMatrices :") 
print("x =", x) 
print("\ny =", y) # Outer product of matrices 
print("\nOuter product of matrices x and y =") 
print(np.outer(x, y)) 

输出:

Vectors :
a =  [2  6]
b =  [3 10]Outer product of vectors a and b =
[[ 6 20][18 60]]
------------------------------------Matrices :
x = [[3 6 4][9 4 6]]y = [[ 1 15  7][ 3 10  8]]Outer product of matrices x and y =
[[  3  45  21   9  30  24][  6  90  42  18  60  48][  4  60  28  12  40  32][  9 135  63  27  90  72][  4  60  28  12  40  32][  6  90  42  18  60  48]]

这说明在 graham 凸包算法中计算两个向量的旋转方向还是需要 np.cross 而不能使用 np.outer 来计算。

python 示例

生成样例散点数据图

# Test the algorithm with an example set of points
points = [(0, 3), (1, 1), (2, 2), (4, 4), (0, 0), (1, 2), (3, 1), (3, 3)]start = min(points, key=lambda p: (p[1], p[0]))print(*zip(*points))fig1 = plt.figure()
plt.scatter(*zip(*points), color='blue')
plt.scatter(*start, color="red")
plt.show()

在这里插入图片描述

graham 算法一般以最下最左(Lowest Then Leftest)的点作为基准点,图中以红色的点作为标识。

显示按极角排序的结果

sorted_points = sorted(points, key=lambda p: (p[1] - start[1]) / (p[0] - start[0] + 1e-9), reverse=False)fig, axs = plt.subplots(2, 4)
for point, ax in zip(sorted_points, axs.flatten()):ax.scatter(*zip(*points), color="blue")ax.scatter(*start, color="red")ax.plot(*zip(*[start, point]), marker="o")
plt.show()

在这里插入图片描述

根据排序点计算向量转向并连成凸包

def cross_product(o, a, b)return (a[0] - o[0]) * (b[1] - o[1]) - (a[1] - o[1]) * (b[0] - o[0])hull = []
for p in sorted_points:while len(hull) >= 2 and cross_product(hull[-2], hull[-1], p) <= 0:hull.pop()hull.append(p)fig = plt.figure()
plt.scatter(*zip(*points), color="blue")
for i in range(len(hull)):p1 = hull[i]p2 = hull[(i + 1) % len(hull)]plt.plot([p1[0], p2[0]], [p1[1], p2[1]], 'r-')
plt.show()

在这里插入图片描述

基本思路

  1. 选取基点(最左最下)
  2. 所有点与基点形成的向量进行极角排序,从小到大
  3. 从当前点(初始时是基点 p 0 p_0 p0 p i p_i pi 出发连接极角排序好的点序列中的下一个点 p i + 1 p_{i+1} pi+1
  4. 从第一个点 p 1 p_1 p1 连接第二个点 p 2 p_2 p2 ,判断前一个向量 p 0 p 1 → \overrightarrow{p_0p_1} p0p1 与新的向量 p 1 p 2 → \overrightarrow{p_1p_2} p1p2 的转向是否是往内拐,如果是外拐的话说明这个地方会形成一个凹陷,不是凸包连线,所以弹出这个新加入的点 p 2 p_2 p2 ,准备下一个点的测试

相关文章:

graham 算法计算平面投影点集的凸包

文章目录 向量的内积&#xff08;点乘&#xff09;、外积&#xff08;叉乘&#xff09;确定旋转方向numpy 的 cross 和 outernp.inner 向量与矩阵计算示例np.outer 向量与矩阵计算示例 python 示例生成样例散点数据图显示按极角排序的结果根据排序点计算向量转向并连成凸包 基本…...

【海外云手机】静态住宅IP集成解决方案

航海大背景下&#xff0c;企业和个人用户对于网络隐私、稳定性以及跨国业务的需求日益增加。静态住宅IP与海外云手机的结合&#xff0c;提供了一种创新的集成解决方案&#xff0c;能够有效应对这些需求。 本篇文章分为三个部分&#xff1b;静态住宅优势、云手机优势、集成解决…...

最新!CSSCI(2023-2024)期刊目录公布!

【SciencePub学术】据鲁迅美术学院7月16日消息&#xff0c;近日&#xff0c;南京大学中国社会科学研究评价中心公布了中文社会科学引文索引&#xff08;CSSCI&#xff09;&#xff08;2023—2024&#xff09;数据库最新入选目录。 C刊一般指CSSCI来源期刊&#xff0c;即南大核心…...

C语言 | Leetcode C语言题解之第237题删除链表中的节点

题目&#xff1a; 题解&#xff1a; /*** Definition for singly-linked list.* struct ListNode {* int val;* struct ListNode *next;* };*/void deleteNode(struct ListNode* node) {struct ListNode * p node->next;int temp;temp node->val;node->val…...

linux LED代码设计

设计目标&#xff1a; 写RGB LED灭、亮、闪烁等效果&#xff0c;不同颜色也需要设置 #include <iostream> #include <unistd.h> // 对于usleep() #include <fcntl.h> // 对于open(), close() #include <sys/ioctl.h> // 对于ioctl() #include <li…...

Jvm基础(一)

目录 JVM是什么运行时数据区域线程私有1.程序计数器2.虚拟机栈3.本地方法栈 线程共享1.方法区2.堆 二、对象创建1.给对象分配空间(1)指针碰撞(2)空闲列表 2.对象的内存布局对象的组成Mark Word类型指针实例数据&#xff1a;对齐填充 对象的访问定位句柄法 三、垃圾收集器和内存…...

深入理解FFmpeg--软/硬件解码流程

FFmpeg是一款强大的多媒体处理工具&#xff0c;支持软件和硬件解码。软件解码利用CPU执行解码过程&#xff0c;适用于各种平台&#xff0c;但可能对性能要求较高。硬件解码则利用GPU或其他专用硬件加速解码&#xff0c;能显著降低CPU负载&#xff0c;提升解码效率和能效。FFmpe…...

新的铸造厂通过 PROFIBUS 技术实现完全自动化

钢铁生产商某钢以其在厚钢板类别中极高的产品质量而闻名。其原材料&#xff08;板坯连铸机&#xff09;在钢铁厂本地生产&#xff0c;该厂最近新建了一座垂直连铸厂。该项目的一个主要目标是从一开始就完全自动化这座新工厂和整个铸造过程&#xff0c;以高成本效率实现最佳产品…...

【UE5.1】NPC人工智能——04 NPC巡逻

效果 步骤 一、准备行为树和黑板 1. 对我们之前创建的AI控制器创建一个子蓝图类 这里命名为“BP_NPC_AIController_Lion”&#xff0c;表示专门用于控制狮子的AI控制器 2. 打开狮子蓝图“Character_Lion” 在类默认值中将“AI控制器类”修改为“BP_NPC_AIController_Lion” 3…...

计算机视觉主流框架及其应用方向

文章目录 前言一、计算机视觉领域的主要框架1、深度学习框架1.1、TensorFlow1.2、PyTorch 2、神经网络模型2.1、卷积神经网络&#xff08;CNN&#xff09;2.2、循环神经网络&#xff08;RNN&#xff09; 二、框架在计算机视觉任务中的应用1、TensorFlow1.1、概述&#xff1a;1.…...

群晖 搭建alist 记录

docker搭建 使用docker-compose 创建一个 docker-compose.yml version: 3.5services:qbittorrent:image: linuxserver/qbittorrent:latestcontainer_name: qbittorrent# network_mode: hostenvironment:- PUID1000- PGID100- TZAsia/Shanghai- WEBUI_PORT8181 # 将外部端口…...

【北航主办丨本届SPIE独立出版丨已确认ISSN号】第三届智能机械与人机交互技术学术会议(IHCIT 2024,7月27)

由北京航空航天大学指导&#xff0c;北京航空航天大学自动化科学与电气工程学院主办&#xff0c;AEIC学术交流中心承办的第三届智能机械与人机交互技术学术会议&#xff08;IHCIT 2024&#xff09;将定于2024年7月27日于中国杭州召开。 大会面向基础与前沿、学科与产业&#xf…...

深入浅出WebRTC—NACK

WebRTC 中的 NACK&#xff08;Negative Acknowledgment&#xff09;机制是实时通信中处理网络丢包的关键组件。网络丢包是常见的现象&#xff0c;尤其是在无线网络或不稳定连接中。NACK 机制旨在通过请求重传丢失的数据包来减少这种影响&#xff0c;从而保持通信的连续性和质量…...

简单工厂模式、工厂模式和抽象工厂模式的区别

简单工厂模式、工厂模式和抽象工厂模式都是创建型设计模式&#xff0c;它们之间在目的、实现方式和适用场景上存在显著的区别。以下是对这三种模式的详细比较&#xff1a; 一、定义与目的 简单工厂模式&#xff08;Simple Factory Pattern&#xff09; 定义&#xff1a; 简单工…...

JVM-垃圾回收与内存分配

目录 垃圾收集器与内存分配策略 引用 对象的访问方式有哪些?&#xff08;句柄和直接指针&#xff09; Java的引用有哪些类型? 如何判断对象是否是垃圾? 请列举一些可作为GC Roots的对象? 对象头了解吗? mark word&#xff08;hashcode、分代、锁标志位&#xff09;、…...

Jolt路线图

1. 引言 a16z crypto团队2024年7月更新了其Jolt路线图&#xff1a; 主要分为3大维度&#xff1a; 1&#xff09;链上验证维度&#xff1a; 1.1&#xff09;Zeromorph&#xff1a;见Aztec Labs团队2023年论文 Zeromorph: Zero-Knowledge Multilinear-Evaluation Proofs from…...

NEEP-EN2-2019-Text4

英二-2019-Text4摘自赫芬顿邮报《The Huffington Post》2018年6月的一篇名为“Let’s Stop Pretending Quitting Straws Will Solve Plastic Pollution”的文章。 以下为个人解析&#xff0c;非官方公开标准资料&#xff0c;可能有误&#xff0c;仅供参考。&#xff08;单词解释…...

docker 部署wechatbot-webhook 并获取接口实现微信群图片自动保存到chevereto图库等

功能如图&#xff1a; docker部署 version: "3" services:excalidraw:image: dannicool/docker-wechatbot-webhook:latestcontainer_name: wechatbot-webhookdeploy:resources:limits:cpus: 0.15memory: 500Mreservations:cpus: 0.05memory: 80Mrestart: alwayspor…...

OpenWrt安装快速入门指南

在刷新 OpenWrt 固件之前&#xff0c;建议进行以下准备&#xff1a; 1、不要急于安装&#xff0c;慢慢来。如果在安装过程中出现奇怪之处&#xff0c;请先找到答案&#xff0c;然后再继续。 2、准备好设备的精确型号&#xff0c;以便能够选择正确的OpenWrt固件。 3、手上有关…...

AIGC Kolors可图IP-Adapter-Plus风格参考模型使用案例

参考: https://huggingface.co/Kwai-Kolors/Kolors-IP-Adapter-Plus 代码环境安装: git clone https://github.com/Kwai-Kolors/Kolors cd Kolors conda create --name kolors python=3.8 conda activate kolors pip install -r requirements.txt python3 setup.py install…...

【网络】每天掌握一个Linux命令 - iftop

在Linux系统中&#xff0c;iftop是网络管理的得力助手&#xff0c;能实时监控网络流量、连接情况等&#xff0c;帮助排查网络异常。接下来从多方面详细介绍它。 目录 【网络】每天掌握一个Linux命令 - iftop工具概述安装方式核心功能基础用法进阶操作实战案例面试题场景生产场景…...

Qt/C++开发监控GB28181系统/取流协议/同时支持udp/tcp被动/tcp主动

一、前言说明 在2011版本的gb28181协议中&#xff0c;拉取视频流只要求udp方式&#xff0c;从2016开始要求新增支持tcp被动和tcp主动两种方式&#xff0c;udp理论上会丢包的&#xff0c;所以实际使用过程可能会出现画面花屏的情况&#xff0c;而tcp肯定不丢包&#xff0c;起码…...

uni-app学习笔记二十二---使用vite.config.js全局导入常用依赖

在前面的练习中&#xff0c;每个页面需要使用ref&#xff0c;onShow等生命周期钩子函数时都需要像下面这样导入 import {onMounted, ref} from "vue" 如果不想每个页面都导入&#xff0c;需要使用node.js命令npm安装unplugin-auto-import npm install unplugin-au…...

【第二十一章 SDIO接口(SDIO)】

第二十一章 SDIO接口 目录 第二十一章 SDIO接口(SDIO) 1 SDIO 主要功能 2 SDIO 总线拓扑 3 SDIO 功能描述 3.1 SDIO 适配器 3.2 SDIOAHB 接口 4 卡功能描述 4.1 卡识别模式 4.2 卡复位 4.3 操作电压范围确认 4.4 卡识别过程 4.5 写数据块 4.6 读数据块 4.7 数据流…...

《用户共鸣指数(E)驱动品牌大模型种草:如何抢占大模型搜索结果情感高地》

在注意力分散、内容高度同质化的时代&#xff0c;情感连接已成为品牌破圈的关键通道。我们在服务大量品牌客户的过程中发现&#xff0c;消费者对内容的“有感”程度&#xff0c;正日益成为影响品牌传播效率与转化率的核心变量。在生成式AI驱动的内容生成与推荐环境中&#xff0…...

【SQL学习笔记1】增删改查+多表连接全解析(内附SQL免费在线练习工具)

可以使用Sqliteviz这个网站免费编写sql语句&#xff0c;它能够让用户直接在浏览器内练习SQL的语法&#xff0c;不需要安装任何软件。 链接如下&#xff1a; sqliteviz 注意&#xff1a; 在转写SQL语法时&#xff0c;关键字之间有一个特定的顺序&#xff0c;这个顺序会影响到…...

相机从app启动流程

一、流程框架图 二、具体流程分析 1、得到cameralist和对应的静态信息 目录如下: 重点代码分析: 启动相机前,先要通过getCameraIdList获取camera的个数以及id,然后可以通过getCameraCharacteristics获取对应id camera的capabilities(静态信息)进行一些openCamera前的…...

04-初识css

一、css样式引入 1.1.内部样式 <div style"width: 100px;"></div>1.2.外部样式 1.2.1.外部样式1 <style>.aa {width: 100px;} </style> <div class"aa"></div>1.2.2.外部样式2 <!-- rel内表面引入的是style样…...

MySQL 8.0 OCP 英文题库解析(十三)

Oracle 为庆祝 MySQL 30 周年&#xff0c;截止到 2025.07.31 之前。所有人均可以免费考取原价245美元的MySQL OCP 认证。 从今天开始&#xff0c;将英文题库免费公布出来&#xff0c;并进行解析&#xff0c;帮助大家在一个月之内轻松通过OCP认证。 本期公布试题111~120 试题1…...

IT供电系统绝缘监测及故障定位解决方案

随着新能源的快速发展&#xff0c;光伏电站、储能系统及充电设备已广泛应用于现代能源网络。在光伏领域&#xff0c;IT供电系统凭借其持续供电性好、安全性高等优势成为光伏首选&#xff0c;但在长期运行中&#xff0c;例如老化、潮湿、隐裂、机械损伤等问题会影响光伏板绝缘层…...