【DGL系列】DGLGraph.out_edges简介
转载请注明出处:小锋学长生活大爆炸[xfxuezhagn.cn]
如果本文帮助到了你,欢迎[点赞、收藏、关注]哦~
目录
函数说明
用法示例
示例 1: 获取所有边的源节点和目标节点
示例 2: 获取特定节点的出边
示例 3: 获取所有边的边ID
示例 4: 获取所有信息(源节点、目标节点和边ID)
示例 5: 对于有多种边缘类型的图形,需要在查询中指定边的类型
示例 6:对于无向图,则边是双向的
dgl.DGLGraph.out_edges — DGL 2.3 documentation
函数说明
dgl.DGLGraph.out_edges 是 DGL(Deep Graph Library)中的一个方法,用于获取图中所有边的源节点和目标节点。这个方法可以用于返回整个图的边,也可以通过传入指定的节点来获取从这些节点出发的边。
DGLGraph.out_edges(u=ALL, etype=None, form='uv')
参数
-
u(节点ID):- 可以是 单个节点ID(整数)。
- 可以是 节点ID的张量(Int Tensor),每个元素是一个节点ID。张量的设备类型和ID数据类型必须与图的相同。
- 可以是 可迭代的节点ID列表(iterable[int]),每个元素是一个节点ID。
-
form(字符串,可选):'eid': 返回1D张量,表示所有边的ID。'uv'(默认): 返回一个2元组(1D张量),分别表示所有边的源节点和目标节点。'all': 返回一个3元组(1D张量),分别表示所有边的源节点、目标节点和边ID。
-
etype(字符串或(字符串, 字符串, 字符串),可选):- 边的类型名称。格式可以是 (源节点类型, 边类型, 目标节点类型)。
- 或者是一个唯一标识三元组格式的字符串类型名称。如果图中只有一种类型的边,可以省略。
返回值
- 返回所有指定类型节点的出边。返回形式取决于
form参数的值。'eid': 返回一个1D张量,表示所有边的ID。'uv': 返回一个2元组(1D张量),分别表示所有边的源节点和目标节点。'all': 返回一个3元组(1D张量),分别表示所有边的源节点、目标节点和边ID。
用法示例
我们创建一个如图所示的简单的graph:

示例 1: 获取所有边的源节点和目标节点
import dgl
import torch# 创建一个简单的图,包含4个节点和4条边
u = torch.tensor([0, 0, 1, 2])
v = torch.tensor([1, 2, 3, 3])
graph = dgl.graph((u, v))# 获取所有边的源节点和目标节点
src, dst = graph.out_edges(graph.nodes())print("源节点:", src)
print("目标节点:", dst)# 源节点: tensor([0, 0, 1, 2])
# 目标节点: tensor([1, 2, 3, 3])
示例 2: 获取特定节点的出边
# 获取节点0和节点1的出边
nodes = torch.tensor([0, 1])
src, dst = graph.out_edges(nodes)print("源节点:", src)
print("目标节点:", dst)# 源节点: tensor([0, 0, 1])
# 目标节点: tensor([1, 2, 3])
示例 3: 获取所有边的边ID
# 获取所有边的边ID
edge_ids = graph.out_edges(graph.nodes(), form='eid')print("边ID:", edge_ids)# 边ID: tensor([0, 1, 2, 3])
示例 4: 获取所有信息(源节点、目标节点和边ID)
# 获取所有边的源节点、目标节点和边ID
src, dst, eid = graph.out_edges(graph.nodes(), form='all')print("源节点:", src)
print("目标节点:", dst)
print("边ID:", eid)# 源节点: tensor([0, 0, 1, 2])
# 目标节点: tensor([1, 2, 3, 3])
# 边ID: tensor([0, 1, 2, 3])
示例 5: 对于有多种边缘类型的图形,需要在查询中指定边的类型
hg = dgl.heterograph({('user', 'follows', 'user'): (torch.tensor([0, 1]), torch.tensor([1, 2])),('user', 'plays', 'game'): (torch.tensor([3, 4]), torch.tensor([5, 6]))
})
hg.out_edges(torch.tensor([1, 2]), etype='follows')# (tensor([1]), tensor([2]))
示例 6:对于无向图,则边是双向的
注意:在dgl的图中,所有边都是有向的,如果要创建无向图,需要创建双向边。

import dgl
import torch# 创建一个无向图,包含4个节点和4条边
u = torch.tensor([0, 0, 1, 2])
v = torch.tensor([1, 2, 3, 3])# 创建双向边以模拟无向图
u_bi = torch.cat([u, v])
v_bi = torch.cat([v, u])graph = dgl.graph((u_bi, v_bi))
# 简化图
graph = dgl.to_simple(graph)# 获取节点的出边
src, dst = graph.out_edges([1, 3])print("源节点:", src)
print("目标节点:", dst)# 源节点: tensor([1, 1, 3, 3])
# 目标节点: tensor([3, 0, 1, 2])
相关文章:
【DGL系列】DGLGraph.out_edges简介
转载请注明出处:小锋学长生活大爆炸[xfxuezhagn.cn] 如果本文帮助到了你,欢迎[点赞、收藏、关注]哦~ 目录 函数说明 用法示例 示例 1: 获取所有边的源节点和目标节点 示例 2: 获取特定节点的出边 示例 3: 获取所有边的边ID 示例 4: 获取所有信息&a…...
掌握品质之钥:ISO9001质量管理体系认证的巨大价值
在当今竞争激烈的市场环境中,企业若要脱颖而出并持续成功,就必须确保其产品和服务质量始终如一。ISO9001质量管理体系认证正是帮助企业实现这一目标的关键工具。本文将深入探讨ISO9001认证的巨大价值以及它如何助力企业提升竞争力、优化内部管理并赢得客…...
网络开局 与 Underlay网络自动化
由于出口和核心设备 部署在核心机房,地理位置集中,业务复杂,开局通常需要网络工程师进站调测。 因此核心层及核心以上的设备(包含核心层设备,旁挂独立AC设备和出口设备)推荐采用WEB网管开局方式或命令行开局方式。 核心以下的设备(包含汇聚层设备、接入层设备和AP)由于数量众…...
MySQL MVCC原理
全称Multi-Version Concurrency Control,即多版本并发控制,主要是为了提高数据库的并发性能。 1、版本链 对于使用InnoDB存储引擎的表来说,它的聚簇索引记录中都包含两个必要的隐藏列: 1、trx_id:每次一个事务对某条…...
编织文字的魔法:探索WebKit的CSS文本效果
编织文字的魔法:探索WebKit的CSS文本效果 在现代网页设计中,文本不仅仅是信息的载体,更是视觉表现的重要元素。WebKit,作为众多浏览器的核心引擎,支持一系列CSS文本效果,使开发者能够创造出引人注目的文本…...
如何在Linux上部署Ruby on Rails应用程序
在Linux上部署Ruby on Rails应用程序是一个相对复杂的过程,需要按照一系列步骤进行。下面是一个基本的部署过程,涵盖了从安装所需软件到部署应用程序的所有步骤。 安装必要的软件 在部署Ruby on Rails应用程序之前,需要确保Linux系统上安装了…...
极狐GitLab 如何管理 PostgreSQL 扩展?
GitLab 是一个全球知名的一体化 DevOps 平台,很多人都通过私有化部署 GitLab 来进行源代码托管。极狐GitLab :https://gitlab.cn/install?channelcontent&utm_sourcecsdn 是 GitLab 在中国的发行版,专门为中国程序员服务。可以一键式部署…...
SpringBoot如何使用Kafka来优化接口请求的并发
在Spring Boot中使用 Kafka 来优化接口请求的并发,主要是通过将耗时的任务异步化到Kafka消息队列中来实现。这样,接口可以立即响应客户端,而不需要等待耗时任务完成。 在Spring Boot应用程序中调用Kafka通常涉及使用Spring Kafka库ÿ…...
全面了解不同GPU算力型号的价格!
这两年人工智能(AI)、机器学习(ML)、深度学习和高性能计算(HPC)领域的快速发展,GPU算力已成为不可或缺的资源。企业、研究机构乃至个人开发者越来越依赖于GPU加速计算来处理大规模数据集和复杂模…...
Linux网络编程之UDP
文章目录 Linux网络编程之UDP1、端口号2、端口号和进程ID的区别3、重新认识网络通讯过程4、UDP协议的简单认识5、网络字节序6、socket编程接口6.1、socket常见接口6.2、sockaddr通用地址结构 7、简单的UDP网络程序7.1、服务器响应程序7.2、服务器执行命令行7.3、服务器英语单词…...
graham 算法计算平面投影点集的凸包
文章目录 向量的内积(点乘)、外积(叉乘)确定旋转方向numpy 的 cross 和 outernp.inner 向量与矩阵计算示例np.outer 向量与矩阵计算示例 python 示例生成样例散点数据图显示按极角排序的结果根据排序点计算向量转向并连成凸包 基本…...
【海外云手机】静态住宅IP集成解决方案
航海大背景下,企业和个人用户对于网络隐私、稳定性以及跨国业务的需求日益增加。静态住宅IP与海外云手机的结合,提供了一种创新的集成解决方案,能够有效应对这些需求。 本篇文章分为三个部分;静态住宅优势、云手机优势、集成解决…...
最新!CSSCI(2023-2024)期刊目录公布!
【SciencePub学术】据鲁迅美术学院7月16日消息,近日,南京大学中国社会科学研究评价中心公布了中文社会科学引文索引(CSSCI)(2023—2024)数据库最新入选目录。 C刊一般指CSSCI来源期刊,即南大核心…...
C语言 | Leetcode C语言题解之第237题删除链表中的节点
题目: 题解: /*** Definition for singly-linked list.* struct ListNode {* int val;* struct ListNode *next;* };*/void deleteNode(struct ListNode* node) {struct ListNode * p node->next;int temp;temp node->val;node->val…...
linux LED代码设计
设计目标: 写RGB LED灭、亮、闪烁等效果,不同颜色也需要设置 #include <iostream> #include <unistd.h> // 对于usleep() #include <fcntl.h> // 对于open(), close() #include <sys/ioctl.h> // 对于ioctl() #include <li…...
Jvm基础(一)
目录 JVM是什么运行时数据区域线程私有1.程序计数器2.虚拟机栈3.本地方法栈 线程共享1.方法区2.堆 二、对象创建1.给对象分配空间(1)指针碰撞(2)空闲列表 2.对象的内存布局对象的组成Mark Word类型指针实例数据:对齐填充 对象的访问定位句柄法 三、垃圾收集器和内存…...
深入理解FFmpeg--软/硬件解码流程
FFmpeg是一款强大的多媒体处理工具,支持软件和硬件解码。软件解码利用CPU执行解码过程,适用于各种平台,但可能对性能要求较高。硬件解码则利用GPU或其他专用硬件加速解码,能显著降低CPU负载,提升解码效率和能效。FFmpe…...
新的铸造厂通过 PROFIBUS 技术实现完全自动化
钢铁生产商某钢以其在厚钢板类别中极高的产品质量而闻名。其原材料(板坯连铸机)在钢铁厂本地生产,该厂最近新建了一座垂直连铸厂。该项目的一个主要目标是从一开始就完全自动化这座新工厂和整个铸造过程,以高成本效率实现最佳产品…...
【UE5.1】NPC人工智能——04 NPC巡逻
效果 步骤 一、准备行为树和黑板 1. 对我们之前创建的AI控制器创建一个子蓝图类 这里命名为“BP_NPC_AIController_Lion”,表示专门用于控制狮子的AI控制器 2. 打开狮子蓝图“Character_Lion” 在类默认值中将“AI控制器类”修改为“BP_NPC_AIController_Lion” 3…...
计算机视觉主流框架及其应用方向
文章目录 前言一、计算机视觉领域的主要框架1、深度学习框架1.1、TensorFlow1.2、PyTorch 2、神经网络模型2.1、卷积神经网络(CNN)2.2、循环神经网络(RNN) 二、框架在计算机视觉任务中的应用1、TensorFlow1.1、概述:1.…...
【Java学习笔记】Arrays类
Arrays 类 1. 导入包:import java.util.Arrays 2. 常用方法一览表 方法描述Arrays.toString()返回数组的字符串形式Arrays.sort()排序(自然排序和定制排序)Arrays.binarySearch()通过二分搜索法进行查找(前提:数组是…...
循环冗余码校验CRC码 算法步骤+详细实例计算
通信过程:(白话解释) 我们将原始待发送的消息称为 M M M,依据发送接收消息双方约定的生成多项式 G ( x ) G(x) G(x)(意思就是 G ( x ) G(x) G(x) 是已知的)࿰…...
376. Wiggle Subsequence
376. Wiggle Subsequence 代码 class Solution { public:int wiggleMaxLength(vector<int>& nums) {int n nums.size();int res 1;int prediff 0;int curdiff 0;for(int i 0;i < n-1;i){curdiff nums[i1] - nums[i];if( (prediff > 0 && curdif…...
高等数学(下)题型笔记(八)空间解析几何与向量代数
目录 0 前言 1 向量的点乘 1.1 基本公式 1.2 例题 2 向量的叉乘 2.1 基础知识 2.2 例题 3 空间平面方程 3.1 基础知识 3.2 例题 4 空间直线方程 4.1 基础知识 4.2 例题 5 旋转曲面及其方程 5.1 基础知识 5.2 例题 6 空间曲面的法线与切平面 6.1 基础知识 6.2…...
Nginx server_name 配置说明
Nginx 是一个高性能的反向代理和负载均衡服务器,其核心配置之一是 server 块中的 server_name 指令。server_name 决定了 Nginx 如何根据客户端请求的 Host 头匹配对应的虚拟主机(Virtual Host)。 1. 简介 Nginx 使用 server_name 指令来确定…...
【服务器压力测试】本地PC电脑作为服务器运行时出现卡顿和资源紧张(Windows/Linux)
要让本地PC电脑作为服务器运行时出现卡顿和资源紧张的情况,可以通过以下几种方式模拟或触发: 1. 增加CPU负载 运行大量计算密集型任务,例如: 使用多线程循环执行复杂计算(如数学运算、加密解密等)。运行图…...
IT供电系统绝缘监测及故障定位解决方案
随着新能源的快速发展,光伏电站、储能系统及充电设备已广泛应用于现代能源网络。在光伏领域,IT供电系统凭借其持续供电性好、安全性高等优势成为光伏首选,但在长期运行中,例如老化、潮湿、隐裂、机械损伤等问题会影响光伏板绝缘层…...
使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台
🎯 使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台 📌 项目背景 随着大语言模型(LLM)的广泛应用,开发者常面临多个挑战: 各大模型(OpenAI、Claude、Gemini、Ollama)接口风格不统一;缺乏一个统一平台进行模型调用与测试;本地模型 Ollama 的集成与前…...
Java + Spring Boot + Mybatis 实现批量插入
在 Java 中使用 Spring Boot 和 MyBatis 实现批量插入可以通过以下步骤完成。这里提供两种常用方法:使用 MyBatis 的 <foreach> 标签和批处理模式(ExecutorType.BATCH)。 方法一:使用 XML 的 <foreach> 标签ÿ…...
初探Service服务发现机制
1.Service简介 Service是将运行在一组Pod上的应用程序发布为网络服务的抽象方法。 主要功能:服务发现和负载均衡。 Service类型的包括ClusterIP类型、NodePort类型、LoadBalancer类型、ExternalName类型 2.Endpoints简介 Endpoints是一种Kubernetes资源…...
