RocketMQ中概念知识点记录 和 与SpringBoot集成实现发送 同步、异步、延时、批量、tag、key、事务消息等
1. 消息模型
- 消息(Message): 是 RocketMQ 中数据传输的基本单位,由主题、标签、键值、消息体等组成。
- 主题(Topic): 消息的分类,类似于邮件的主题,用于对消息进行粗粒度的分类。
- 标签(Tag): 对消息进一步细分的标识,可以理解为消息的子类别。
- 键(Key): 用于消息的精确路由或在某些场景下作为消息的唯一标识。
2. 生产者(Producer)
-
普通消息发送:
- 同步发送:发送消息后等待响应,确认消息是否发送成功。
- 异步发送:发送消息后不等待响应,通过回调函数处理结果。
- 单向发送:只发送消息,不关心发送结果。
-
事务消息:
- 用于保证消息发送与本地事务的一致性,需要在事务执行成功后显式提交或回滚消息。
3. 消费者(Consumer)
- 拉取模式(Pull): 消费者主动从 Broker 拉取消息。
- 推送模式(Push): Broker 主动将消息推送给消费者,这是 RocketMQ 默认的消费方式。
4. 消息消费类型
- 集群消费(Cluster Consuming): 每条消息只会被集群中的一个消费者消费,适用于消息需要被处理一次的情况。
- 广播消费(Broadcast Consuming): 每条消息会被所有订阅该 Topic 的消费者消费,适用于消息需要被所有相关节点处理的情况。
5. 顺序消息
- 全局顺序消息:
- 消息按照发送顺序消费,适用于对消息顺序有严格要求的场景,但性能较低。
- 分区顺序消息:
- 在同一个消息队列中消息按顺序消费,不同队列间的消息消费顺序无法保证。
实现原理:将某些消息,按一定规则,发到同一个队列中
- 在同一个消息队列中消息按顺序消费,不同队列间的消息消费顺序无法保证。
6. 消费重试与死信队列
- 当消息消费失败时,RocketMQ 会自动重新投递消息给消费者尝试再次消费。
- 如果消息多次消费失败,可以配置消息进入死信队列,以便后续人工干预。
7. 延迟消息
- 允许设置消息的延迟等级,控制消息在指定时间后才可被消费。
8. 消息过滤
- Tag过滤:
- 消费者可以根据消息的标签进行过滤,只消费特定标签的消息。
- SQL92过滤:
- 提供更复杂的过滤逻辑,允许根据消息属性进行条件匹配。
9. 消息堆积
- 当消费者消费速度慢于生产者发送速度时,会出现消息堆积,可能需要增加消费者实例数来提高消费能力。
10. 监控与管理
- RocketMQ 提供了丰富的监控指标,包括消息发送成功率、延迟、消费速率等,便于运维人员监控系统健康状态。
代码示例:
链接: https://pan.baidu.com/s/1QK_YXo0GceYyN6E4JMnSmA 提取码: gcew
相关文章:
RocketMQ中概念知识点记录 和 与SpringBoot集成实现发送 同步、异步、延时、批量、tag、key、事务消息等
1. 消息模型 消息(Message): 是 RocketMQ 中数据传输的基本单位,由主题、标签、键值、消息体等组成。主题(Topic): 消息的分类,类似于邮件的主题,用于对消息进行粗粒度的分类。标签(…...
云计算实训09——rsync远程同步、自动化推取文件、对rsyncd服务进行加密操作、远程监控脚本
一、rsync远程同步 1.rsync基本概述 (1)sync同步 (2)async异步 (3)rsync远程同步 2.rsync的特点 可以镜像保存整个目录树和文件系统 可以保留原有权限,owner,group,时间,软硬链…...
【DGL系列】DGLGraph.out_edges简介
转载请注明出处:小锋学长生活大爆炸[xfxuezhagn.cn] 如果本文帮助到了你,欢迎[点赞、收藏、关注]哦~ 目录 函数说明 用法示例 示例 1: 获取所有边的源节点和目标节点 示例 2: 获取特定节点的出边 示例 3: 获取所有边的边ID 示例 4: 获取所有信息&a…...
掌握品质之钥:ISO9001质量管理体系认证的巨大价值
在当今竞争激烈的市场环境中,企业若要脱颖而出并持续成功,就必须确保其产品和服务质量始终如一。ISO9001质量管理体系认证正是帮助企业实现这一目标的关键工具。本文将深入探讨ISO9001认证的巨大价值以及它如何助力企业提升竞争力、优化内部管理并赢得客…...
网络开局 与 Underlay网络自动化
由于出口和核心设备 部署在核心机房,地理位置集中,业务复杂,开局通常需要网络工程师进站调测。 因此核心层及核心以上的设备(包含核心层设备,旁挂独立AC设备和出口设备)推荐采用WEB网管开局方式或命令行开局方式。 核心以下的设备(包含汇聚层设备、接入层设备和AP)由于数量众…...
MySQL MVCC原理
全称Multi-Version Concurrency Control,即多版本并发控制,主要是为了提高数据库的并发性能。 1、版本链 对于使用InnoDB存储引擎的表来说,它的聚簇索引记录中都包含两个必要的隐藏列: 1、trx_id:每次一个事务对某条…...
编织文字的魔法:探索WebKit的CSS文本效果
编织文字的魔法:探索WebKit的CSS文本效果 在现代网页设计中,文本不仅仅是信息的载体,更是视觉表现的重要元素。WebKit,作为众多浏览器的核心引擎,支持一系列CSS文本效果,使开发者能够创造出引人注目的文本…...
如何在Linux上部署Ruby on Rails应用程序
在Linux上部署Ruby on Rails应用程序是一个相对复杂的过程,需要按照一系列步骤进行。下面是一个基本的部署过程,涵盖了从安装所需软件到部署应用程序的所有步骤。 安装必要的软件 在部署Ruby on Rails应用程序之前,需要确保Linux系统上安装了…...
极狐GitLab 如何管理 PostgreSQL 扩展?
GitLab 是一个全球知名的一体化 DevOps 平台,很多人都通过私有化部署 GitLab 来进行源代码托管。极狐GitLab :https://gitlab.cn/install?channelcontent&utm_sourcecsdn 是 GitLab 在中国的发行版,专门为中国程序员服务。可以一键式部署…...
SpringBoot如何使用Kafka来优化接口请求的并发
在Spring Boot中使用 Kafka 来优化接口请求的并发,主要是通过将耗时的任务异步化到Kafka消息队列中来实现。这样,接口可以立即响应客户端,而不需要等待耗时任务完成。 在Spring Boot应用程序中调用Kafka通常涉及使用Spring Kafka库ÿ…...
全面了解不同GPU算力型号的价格!
这两年人工智能(AI)、机器学习(ML)、深度学习和高性能计算(HPC)领域的快速发展,GPU算力已成为不可或缺的资源。企业、研究机构乃至个人开发者越来越依赖于GPU加速计算来处理大规模数据集和复杂模…...
Linux网络编程之UDP
文章目录 Linux网络编程之UDP1、端口号2、端口号和进程ID的区别3、重新认识网络通讯过程4、UDP协议的简单认识5、网络字节序6、socket编程接口6.1、socket常见接口6.2、sockaddr通用地址结构 7、简单的UDP网络程序7.1、服务器响应程序7.2、服务器执行命令行7.3、服务器英语单词…...
graham 算法计算平面投影点集的凸包
文章目录 向量的内积(点乘)、外积(叉乘)确定旋转方向numpy 的 cross 和 outernp.inner 向量与矩阵计算示例np.outer 向量与矩阵计算示例 python 示例生成样例散点数据图显示按极角排序的结果根据排序点计算向量转向并连成凸包 基本…...
【海外云手机】静态住宅IP集成解决方案
航海大背景下,企业和个人用户对于网络隐私、稳定性以及跨国业务的需求日益增加。静态住宅IP与海外云手机的结合,提供了一种创新的集成解决方案,能够有效应对这些需求。 本篇文章分为三个部分;静态住宅优势、云手机优势、集成解决…...
最新!CSSCI(2023-2024)期刊目录公布!
【SciencePub学术】据鲁迅美术学院7月16日消息,近日,南京大学中国社会科学研究评价中心公布了中文社会科学引文索引(CSSCI)(2023—2024)数据库最新入选目录。 C刊一般指CSSCI来源期刊,即南大核心…...
C语言 | Leetcode C语言题解之第237题删除链表中的节点
题目: 题解: /*** Definition for singly-linked list.* struct ListNode {* int val;* struct ListNode *next;* };*/void deleteNode(struct ListNode* node) {struct ListNode * p node->next;int temp;temp node->val;node->val…...
linux LED代码设计
设计目标: 写RGB LED灭、亮、闪烁等效果,不同颜色也需要设置 #include <iostream> #include <unistd.h> // 对于usleep() #include <fcntl.h> // 对于open(), close() #include <sys/ioctl.h> // 对于ioctl() #include <li…...
Jvm基础(一)
目录 JVM是什么运行时数据区域线程私有1.程序计数器2.虚拟机栈3.本地方法栈 线程共享1.方法区2.堆 二、对象创建1.给对象分配空间(1)指针碰撞(2)空闲列表 2.对象的内存布局对象的组成Mark Word类型指针实例数据:对齐填充 对象的访问定位句柄法 三、垃圾收集器和内存…...
深入理解FFmpeg--软/硬件解码流程
FFmpeg是一款强大的多媒体处理工具,支持软件和硬件解码。软件解码利用CPU执行解码过程,适用于各种平台,但可能对性能要求较高。硬件解码则利用GPU或其他专用硬件加速解码,能显著降低CPU负载,提升解码效率和能效。FFmpe…...
新的铸造厂通过 PROFIBUS 技术实现完全自动化
钢铁生产商某钢以其在厚钢板类别中极高的产品质量而闻名。其原材料(板坯连铸机)在钢铁厂本地生产,该厂最近新建了一座垂直连铸厂。该项目的一个主要目标是从一开始就完全自动化这座新工厂和整个铸造过程,以高成本效率实现最佳产品…...
rknn优化教程(二)
文章目录 1. 前述2. 三方库的封装2.1 xrepo中的库2.2 xrepo之外的库2.2.1 opencv2.2.2 rknnrt2.2.3 spdlog 3. rknn_engine库 1. 前述 OK,开始写第二篇的内容了。这篇博客主要能写一下: 如何给一些三方库按照xmake方式进行封装,供调用如何按…...
【Java学习笔记】Arrays类
Arrays 类 1. 导入包:import java.util.Arrays 2. 常用方法一览表 方法描述Arrays.toString()返回数组的字符串形式Arrays.sort()排序(自然排序和定制排序)Arrays.binarySearch()通过二分搜索法进行查找(前提:数组是…...
屋顶变身“发电站” ,中天合创屋面分布式光伏发电项目顺利并网!
5月28日,中天合创屋面分布式光伏发电项目顺利并网发电,该项目位于内蒙古自治区鄂尔多斯市乌审旗,项目利用中天合创聚乙烯、聚丙烯仓库屋面作为场地建设光伏电站,总装机容量为9.96MWp。 项目投运后,每年可节约标煤3670…...
【JavaWeb】Docker项目部署
引言 之前学习了Linux操作系统的常见命令,在Linux上安装软件,以及如何在Linux上部署一个单体项目,大多数同学都会有相同的感受,那就是麻烦。 核心体现在三点: 命令太多了,记不住 软件安装包名字复杂&…...
自然语言处理——文本分类
文本分类 传统机器学习方法文本表示向量空间模型 特征选择文档频率互信息信息增益(IG) 分类器设计贝叶斯理论:线性判别函数 文本分类性能评估P-R曲线ROC曲线 将文本文档或句子分类为预定义的类或类别, 有单标签多类别文本分类和多…...
Visual Studio Code 扩展
Visual Studio Code 扩展 change-case 大小写转换EmmyLua for VSCode 调试插件Bookmarks 书签 change-case 大小写转换 https://marketplace.visualstudio.com/items?itemNamewmaurer.change-case 选中单词后,命令 changeCase.commands 可预览转换效果 EmmyLua…...
论文阅读:Matting by Generation
今天介绍一篇关于 matting 抠图的文章,抠图也算是计算机视觉里面非常经典的一个任务了。从早期的经典算法到如今的深度学习算法,已经有很多的工作和这个任务相关。这两年 diffusion 模型很火,大家又开始用 diffusion 模型做各种 CV 任务了&am…...
【把数组变成一棵树】有序数组秒变平衡BST,原来可以这么优雅!
【把数组变成一棵树】有序数组秒变平衡BST,原来可以这么优雅! 🌱 前言:一棵树的浪漫,从数组开始说起 程序员的世界里,数组是最常见的基本结构之一,几乎每种语言、每种算法都少不了它。可你有没有想过,一组看似“线性排列”的有序数组,竟然可以**“长”成一棵平衡的二…...
机器学习的数学基础:线性模型
线性模型 线性模型的基本形式为: f ( x ) ω T x b f\left(\boldsymbol{x}\right)\boldsymbol{\omega}^\text{T}\boldsymbol{x}b f(x)ωTxb 回归问题 利用最小二乘法,得到 ω \boldsymbol{\omega} ω和 b b b的参数估计$ \boldsymbol{\hat{\omega}}…...
数据挖掘是什么?数据挖掘技术有哪些?
目录 一、数据挖掘是什么 二、常见的数据挖掘技术 1. 关联规则挖掘 2. 分类算法 3. 聚类分析 4. 回归分析 三、数据挖掘的应用领域 1. 商业领域 2. 医疗领域 3. 金融领域 4. 其他领域 四、数据挖掘面临的挑战和未来趋势 1. 面临的挑战 2. 未来趋势 五、总结 数据…...
