当前位置: 首页 > news >正文

基于PSO算法优化PID参数的一些问题

目录

前言

Q1:惯性权重ω如何设置比较好?学习因子C1和C2如何设置?

Q2:迭代速度边界设定一定能够遍历(/覆盖)整个PID参数二维空间范围吗?还是说需要与迭代次数相关?迭代次数越高,范围越大?

Q3:PID位置边界是一致比较方便寻优吗?如果我设置Kp范围为[0,100],而Ki和Kd的范围为[0,1],这样子的设置对寻优有很大影响吗?

Q4:如果PID位置边界我都设置为[0,10],速度边界怎么设置更好?[-1,1],[-5,5],[-10,10],速度边界的设置与迭代找到最优解的计算机求解速度有关联吗?

尾声


前言

当我再一次想要认认真真研究一下PSO粒子群算法优化PID参数的时候,准备去matlab中文论坛发帖子讨论,没想到这个论坛已经停止运营了...

下面我将提出四个非常重要的问题,并对这四个问题做出回答。这是我在做研究的时候想找寻“所以然”的一个结果。

在开始之前首先非常推荐一本书,有条件的可以去图书馆借来看看:《粒子群优化算法》李丽、牛奔,相信这本书可以解决你绝大部分疑惑。


PSO粒子群算法两个分常重要的公式:

 速度公式:

位置公式:


Q1:惯性权重ω如何设置比较好?学习因子C1和C2如何设置?

A1:在我的那篇呈现线性递减惯性权重的PSO-PID代码的文章中(🚪👉线性递减权重的PSO-PID算法),可以知道设置的惯性权重ω是从0.9随着迭代此时而线性递减到0.4的,而个人学习因子C1和社会学习因子C2设置的为一个定值,等于2。

其实,为了让粒子前期尽可能地搜索整个空间,后期更好地收敛到某一个点,加快仿真时间,我们可以设置惯性权重前期大后期小,这样前期惯性大主要还是靠自己的飞行速度,而后期惯性小就利于收敛;同理,对于个人学习因子C1,前期要大,后期要小;对于社会学习因子则反之。ω范围0.4~0.9(不一定是这个数),C1和C2的范围0.1~2

下面我分别给出常见的惯性权重和学习因子设置的公式:

惯性权重:

以下的ωstart都为0.9,ωend都为0.4

固定惯性权重

(C在0.4~0.9区间,这里取0.68比较好)

典型线性递减惯性权重

线性微分递减惯性权重

随机变化惯性权重

非线性动态惯性权重

(k取3比较好)

基于正切函数的惯性权重

(k取0.6比较好)

基于反切函数的惯性权重

(k取0.4比较好)


学习因子:

固定学习因子

(C1和C2在1~2.5区间)

线性变换学习因子

C_1start=2.5,C_1end=0.5

C_2start=0.5,C_2end=2.5

对称反余弦学习因子

C_1start=2.5,C_1end=0.5

C_2start=0.5,C_2end=2.5

非对称反余弦学习因子

C_1start=2.75,C_1end=1.25

)

C_2start=0.5,C_2end=2.25


以及不用惯性权重而用收缩因子,收缩因子K比起惯性权重,更能有效地控制约束粒子飞行速度,增强了算法局部搜索能力。

那么原来速度公式要变为:

其中

Q2:迭代速度边界设定一定能够遍历(/覆盖)整个PID参数二维空间范围吗?还是说需要与迭代次数相关?迭代次数越高,范围越大?

A2:

首先,速度边界的设定,VmaxVmin大小相等的相反数

其次,速度边界的设定没有固定就是某一个值的说法,速度边界设定与位置边界设定有关,如果Vmax过大,粒子可能飞过较好解;反之,如果Vmax过小,则粒子可能无法探测完整个解空间,所以要设置一个合适的速度边界

最后,迭代次数肯定和覆盖整个二维空间有关,迭代次数越高,覆盖完整的几率更高,但是你得考虑自己电脑的算力和计算时间的问题。

Q3:PID位置边界是一致比较方便寻优吗?如果我设置Kp范围为[0,100],而Ki和Kd的范围为[0,1],这样子的设置对寻优有很大影响吗?

A3:

我认为按照实际情况来设置不同的寻优范围就可以了,Kp、Ki和Kd可以设置不同的寻优范围,没有必要三个范围一致。比如本来实际Kd的数值就比较小,你让PSO算法在10~100的范围里面去寻找Kd的最优解,是无效的。

Q4:如果PID位置边界我都设置为[0,10],速度边界怎么设置更好?[-1,1],[-5,5],[-10,10],速度边界的设置与迭代找到最优解的计算机求解速度有关联吗?

A4:

在我另外一篇文章里面(🚪👉:PSO-PID算法迭代的PID值为什么变化范围那么小?)我也尝试过,只改变速度边界的大小进行对照试验,发现对于求解的结果是没有什么影响的,计算机求解速度的话每一次都会有些许差别,这个我当时仿真的时候没有进行计算。

其实速度边界和位置边界是有相关对于关系的:

根据这篇文章,Optimal choice of parameters for particle swarm optimization浙江大学学报,γ最佳范围在0.01~1,对于寻优目标函数为多峰函数(multimodel function),γ取0.5最好,对于单峰函数(unimodel function),γ取0.05最好。也就是说若取γ=0.1,当Xmax=10时,则Vmax=1。

同样是在这一篇文章中,也指出粒子群的粒子个数,最大不要超过50个粒子,不管是对于多峰函数问题还是单峰函数问题。

"While when it is larger than 50, PSO is not sensitive to the population size."

“当PSO大于50时,PSO对种群大小不敏感。”

这是原文,就算你超过了50个粒子,也对其不敏感,只是增加你matlab程序的时间。


尾声

希望我这些天的困惑解答会对同为研究相关问题的你有帮助!!!👍

不明白清楚的也可以在评论区积极探讨呀!😊

相关文章:

基于PSO算法优化PID参数的一些问题

目录 前言 Q1:惯性权重ω如何设置比较好?学习因子C1和C2如何设置? Q2:迭代速度边界设定一定能够遍历(/覆盖)整个PID参数二维空间范围吗?还是说需要与迭代次数相关?迭代次数越高&a…...

什么是决策树?

1. 什么是决策树? 决策树(Decision Tree)是一种常用的机器学习算法,用于解决分类和回归问题。它通过构建树结构来表示决策过程,分支节点表示特征选择,叶节点表示类别或回归值。 2. 决策树的组成部分 决策…...

ASP 快速参考

ASP 快速参考 概述 ASP(Active Server Pages)是一种由微软开发的服务器端脚本环境,用于动态网页设计和开发。它允许开发者创建和运行动态交互性网页,如访问数据库、发送电子邮件等。ASP页面通常以.asp为文件扩展名,并…...

(二)原生js案例之数码时钟计时

原生js实现的数字时间上下切换显示时间的效果&#xff0c;有参考相关设计&#xff0c;思路比较难&#xff0c;代码其实很简单 效果 代码实现 必要的样式 <style>* {padding: 0;margin: 0;}.content{/* text-align: center; */display: flex;align-items: center;justif…...

[CSS] 浮动布局的深入理解与应用

文章目录 浮动的简介元素浮动后的特点解决浮动产生的影响浮动后的影响解决浮动产生的影响 浮动相关属性实际应用示例示例1&#xff1a;图片与文字环绕示例2&#xff1a;多列布局示例3&#xff1a;响应式布局 总结 浮动布局是CSS中一种非常强大的布局方式&#xff0c;最初设计用…...

Linux云计算 |【第一阶段】ENGINEER-DAY2

主要内容&#xff1a; 磁盘空间管理fdisk、parted工具、开机自动挂载、文件系统、交换空间 KVM虚拟化 实操前骤&#xff1a; 1&#xff09;添加一块硬盘&#xff08;磁盘&#xff09;&#xff0c;需要关机才能进行操作&#xff0c;点击左下角【添加硬件】 2&#xff09;选择2…...

9.11和9.9哪个大?

没问题 文心一言 通义千问...

学懂C语言(十二):C语言中的二进制原理及应用

目录 1. 二进制原理 1.1 什么是二进制&#xff1f; 1.2 如何在C语言中表示二进制&#xff1f; 2. 二进制的表示 2.1 二进制和其他进制的转换 2.2 C语言中的二进制表示 3. 二进制运算 3.1 位运算符 3.2 计算过程示例 4. 应用示例 4.1 使用位运算实现开关 5. 总结 C语…...

科研绘图系列:R语言雨云图(Raincloud plot)

介绍 雨云图(Raincloud plot)是一种数据可视化工具,它结合了多种数据展示方式,旨在提供对数据集的全面了解。雨云图通常包括以下几个部分: 密度图(Density plot):表示数据的分布情况,密度图的曲线可以展示数据在不同数值区间的密度。箱线图(Box plot):显示数据的中…...

优化教学流程和架构:构建高效学习环境的关键步骤

在教育领域&#xff0c;设计和优化教学流程和架构是提高学习效果和学生参与度的关键。本文将探讨如何通过合理的教学流程和有效的架构来构建一个高效的学习环境。 ### 1. 理解教学流程和架构的重要性 教学流程指的是教学活动的组织和顺序&#xff0c;而教学架构则是指支持教学…...

js | this 指向问题

https://juejin.cn/post/6844904083707396109 任何函数运行的时候&#xff0c;都会创建一个context对象&#xff0c;context对象有一个this对象&#xff0c;在运行的时候决定。任何函数都对应一个reference类结构体&#xff08;具体叫啥有点忘了&#xff09;&#xff0c;简单就…...

《昇思 25 天学习打卡营第 15 天 | 基于MindNLP+MusicGen生成自己的个性化音乐 》

《昇思 25 天学习打卡营第 15 天 | 基于MindNLPMusicGen生成自己的个性化音乐 》 活动地址&#xff1a;https://xihe.mindspore.cn/events/mindspore-training-camp 签名&#xff1a;Sam9029 MusicGen概述 MusicGen是由Meta AI的Jade Copet等人提出的一种基于单个语言模型&…...

Gitee 使用教程1-SSH 公钥设置

一、生成 SSH 公钥 1、打开终端&#xff08;Windows PowerShell 或 Git Bash&#xff09;&#xff0c;通过命令 ssh-keygen 生成 SSH Key&#xff1a; ssh-keygen -t ed25519 -C "Gitee SSH Key" 随后摁三次回车键&#xff08;Enter&#xff09; 2、查看生成的 SSH…...

理解Cookie、Session和Token

在现代Web开发中&#xff0c;用户身份认证和会话管理是至关重要的部分。理解Cookie、Session和Token的区别和应用场景&#xff0c;有助于我们设计出更加安全和高效的Web应用。本文将详细探讨这三者的工作原理、优缺点以及使用场景。 1. Cookie 1.1 什么是Cookie&#xff1f; …...

概率论原理精解【1】

文章目录 测度概述集类笛卡尔积定义例子 多集合的笛卡尔积定义计算方法注意事项 有限笛卡尔积的性质1. 定义2. 性质2.1 基数性质2.2 空集性质2.3 不满足交换律2.4 不满足结合律2.5 对并和交运算满足分配律 3. 示例4. 结论 参考链接 测度 概述 所谓测度&#xff0c;通俗的讲就…...

数据结构(二叉树-1)

文章目录 一、树 1.1 树的概念与结构 1.2 树的相关术语 1.3 树的表示 二、二叉树 2.1 二叉树的概念与结构 2.2特殊的二叉树 满二叉树 完全二叉树 2.3 二叉树的存储结构 三、实现顺序结构二叉树 3.1 堆的概念与结构 3.2 堆的实现 Heap.h Heap.c 默认初始化堆 堆的销毁 堆的插入 …...

巴黎奥运会倒计时 一个非常不错的倒计时提醒

巴黎奥运会还有几天就要开幕了&#xff0c;大家应该到处都可以看到巴黎奥运会的倒计时&#xff0c;不管是电视上&#xff0c;还是网络里&#xff0c;一搜索奥运会&#xff0c;就会看到。倒计时其实是一个我们在生活中很常用的一个方法&#xff0c;用来做事情的提醒&#xff0c;…...

【Python】使用库 -- 详解

库就是别人已经写好了的代码&#xff0c;可以让我们直接拿来用。 一个编程语言能不能流行起来&#xff0c;一方面取决于语法是否简单方便容易学习&#xff0c;一方面取决于生态是否完备。所谓的 “生态” 指的就是语言是否有足够丰富的库&#xff0c;来应对各种各样的场景。在…...

Web3D:WebGL为什么在渲染性能上输给了WebGPU。

WebGL已经成为了web3D的标配&#xff0c;市面上有N多基于webGL的3D引擎&#xff0c;WebGPU作为挑战者&#xff0c;在渲染性能上确实改过webGL一头&#xff0c;由于起步较晚&#xff0c;想通过这个优势加持&#xff0c;赶上并超越webGL仍需时日。 贝格前端工场为大家分享一下这…...

SpringBoot面试高频总结01

1. 什么是SpringBoot&#xff1f; SpringBoot是一个基于Spring框架的快速开发框架&#xff0c;它采用约定大于配置&#xff0c;自动装配的方式&#xff0c;可以快速地创建独立的&#xff0c;生产级别的&#xff0c;基于Spring的应用程序。 相比于传统的Spring框架&#xff0c;S…...

Vim 调用外部命令学习笔记

Vim 外部命令集成完全指南 文章目录 Vim 外部命令集成完全指南核心概念理解命令语法解析语法对比 常用外部命令详解文本排序与去重文本筛选与搜索高级 grep 搜索技巧文本替换与编辑字符处理高级文本处理编程语言处理其他实用命令 范围操作示例指定行范围处理复合命令示例 实用技…...

基于距离变化能量开销动态调整的WSN低功耗拓扑控制开销算法matlab仿真

目录 1.程序功能描述 2.测试软件版本以及运行结果展示 3.核心程序 4.算法仿真参数 5.算法理论概述 6.参考文献 7.完整程序 1.程序功能描述 通过动态调整节点通信的能量开销&#xff0c;平衡网络负载&#xff0c;延长WSN生命周期。具体通过建立基于距离的能量消耗模型&am…...

R语言AI模型部署方案:精准离线运行详解

R语言AI模型部署方案:精准离线运行详解 一、项目概述 本文将构建一个完整的R语言AI部署解决方案,实现鸢尾花分类模型的训练、保存、离线部署和预测功能。核心特点: 100%离线运行能力自包含环境依赖生产级错误处理跨平台兼容性模型版本管理# 文件结构说明 Iris_AI_Deployme…...

Linux相关概念和易错知识点(42)(TCP的连接管理、可靠性、面临复杂网络的处理)

目录 1.TCP的连接管理机制&#xff08;1&#xff09;三次握手①握手过程②对握手过程的理解 &#xff08;2&#xff09;四次挥手&#xff08;3&#xff09;握手和挥手的触发&#xff08;4&#xff09;状态切换①挥手过程中状态的切换②握手过程中状态的切换 2.TCP的可靠性&…...

系统设计 --- MongoDB亿级数据查询优化策略

系统设计 --- MongoDB亿级数据查询分表策略 背景Solution --- 分表 背景 使用audit log实现Audi Trail功能 Audit Trail范围: 六个月数据量: 每秒5-7条audi log&#xff0c;共计7千万 – 1亿条数据需要实现全文检索按照时间倒序因为license问题&#xff0c;不能使用ELK只能使用…...

WPF八大法则:告别模态窗口卡顿

⚙️ 核心问题&#xff1a;阻塞式模态窗口的缺陷 原始代码中ShowDialog()会阻塞UI线程&#xff0c;导致后续逻辑无法执行&#xff1a; var result modalWindow.ShowDialog(); // 线程阻塞 ProcessResult(result); // 必须等待窗口关闭根本问题&#xff1a…...

Linux 下 DMA 内存映射浅析

序 系统 I/O 设备驱动程序通常调用其特定子系统的接口为 DMA 分配内存&#xff0c;但最终会调到 DMA 子系统的dma_alloc_coherent()/dma_alloc_attrs() 等接口。 关于 dma_alloc_coherent 接口详细的代码讲解、调用流程&#xff0c;可以参考这篇文章&#xff0c;我觉得写的非常…...

数据结构第5章:树和二叉树完全指南(自整理详细图文笔记)

名人说&#xff1a;莫道桑榆晚&#xff0c;为霞尚满天。——刘禹锡&#xff08;刘梦得&#xff0c;诗豪&#xff09; 原创笔记&#xff1a;Code_流苏(CSDN)&#xff08;一个喜欢古诗词和编程的Coder&#x1f60a;&#xff09; 上一篇&#xff1a;《数据结构第4章 数组和广义表》…...

Windows电脑能装鸿蒙吗_Windows电脑体验鸿蒙电脑操作系统教程

鸿蒙电脑版操作系统来了&#xff0c;很多小伙伴想体验鸿蒙电脑版操作系统&#xff0c;可惜&#xff0c;鸿蒙系统并不支持你正在使用的传统的电脑来安装。不过可以通过可以使用华为官方提供的虚拟机&#xff0c;来体验大家心心念念的鸿蒙系统啦&#xff01;注意&#xff1a;虚拟…...

基于江科大stm32屏幕驱动,实现OLED多级菜单(动画效果),结构体链表实现(独创源码)

引言 在嵌入式系统中&#xff0c;用户界面的设计往往直接影响到用户体验。本文将以STM32微控制器和OLED显示屏为例&#xff0c;介绍如何实现一个多级菜单系统。该系统支持用户通过按键导航菜单&#xff0c;执行相应操作&#xff0c;并提供平滑的滚动动画效果。 本文设计了一个…...