当前位置: 首页 > news >正文

Java中SPI机制原理解析

使用SPI机制前后的代码变化

  • 加载MySQL对JDBC的Driver接口实现
    在未使用SPI机制之前,使用JDBC操作数据库的时候,一般会写如下的代码:
    // 通过这行代码手动加载MySql对Driver接口的实现类
    Class.forName("com.mysql.jdbc.Driver")
    DriverManager.getConnection("jdbc:mysql://127.0.0.1:3306/study", "root", "root");
    
    在使用了SPI机制之后,就直接可以调用DriverManager.getConnection()方法获取连接了。
  • SLF4J查找日志门面实现
    在未使用SPI机制之前,SLF4J日志门面在查找具体的日志实现时,需要每个实现提供一个叫org.slf4j.com.impl.StaticLoggerBinder.class类,这里其实就跟SPI机制有点类似了,这个类实现了和SPI机制中的配置文件的功能,通过这个类来实现和具体实现的绑定关系。
    20240721170318
    使用了SPI机制之后则是通过SLF4JServiceProvider类来实现和具体实现的绑定关系。
    20240721171037
    20240721174312

SPI代码实现案例

假设现在有一个Plugin的接口,调用方通过PluginFactory中的installPlugins方法来加载实现实现类,并进行调用,代码如下所示:

// Plugin接口
public interface Plugin {boolean install(Map<Object, Object> context);
}public class PluginFactory {public void installPlugins() {Map<Object, Object> context = new HashMap<>();context.put("_beans", new ArrayList<>());context.put("_version", "1.0.0");context.put("_aspects", new HashMap<>());// 这里通过ServiceLoader加载Plugin的实现类ServiceLoader<Plugin> loader = ServiceLoader.load(Plugin.class);for (Plugin plugin : loader) {plugin.install(context);}}public static void main(String[] args) {PluginFactory factory = new PluginFactory();factory.installPlugins();}
}

Plugin接口实现者的代码:

public class LogPlugin implements Plugin {private static final Logger LOGGER = LogManager.getLogger();@Overridepublic boolean install(Map<Object, Object> context) {LOGGER.info("Login plugin is initiating...");return true;}
}

20240721214035
20240721214130

使用SPI机制有个好处就是:当需要切换不同的实现类时,无需对业务代码进行适配修改,直接将Maven配置里面的实现依赖切换即可,对于实际的环境可能就是直接将对应的jar包替换到对应的lib目录下,然后重启服务即可。

SPI代码实现原理

ServiceLoader的load方法实现原理是通过接口的全限定名称去读取META-INF/services路径下的文件,获取文件里面实现类的全限定名,然后加载该类,并通过反射的方式调用构造器获取实现类的实例,然后返回,如下图所示:
20240721215047

20240721214737

20240721215650

20240721214937

相关文章:

Java中SPI机制原理解析

使用SPI机制前后的代码变化 加载MySQL对JDBC的Driver接口实现 在未使用SPI机制之前&#xff0c;使用JDBC操作数据库的时候&#xff0c;一般会写如下的代码&#xff1a;// 通过这行代码手动加载MySql对Driver接口的实现类 Class.forName("com.mysql.jdbc.Driver") Dr…...

数学建模~~~SPSS相关和回归分析

目录 1.双变量相关分析 1.1理论基础 1.2简单散点图的绘制介绍 1.3相关性分析 1.4分析相关性结果 2.简单线性回归分析 2.1简单概括 2.2分析过程 2.3结果分析 3.曲线回归分析 3.1问题介绍 3.2分析过程 3.3结果分析 1.双变量相关分析 1.1理论基础 双变量相关分析并不…...

【Android】常用基础布局

布局是一种可用于放置很多控件的容器&#xff0c;它可以按照一定的规律调整内部控件的位置&#xff0c;从而编写出精美的界面&#xff0c;布局内不单单可以放控件&#xff0c;也可以嵌套布局&#xff0c;这样可以完成一些复杂的界面&#xff0c;下面就来认识一些常用的布局吧。…...

服务攻防-中间件安全(漏洞复现)

一.中间件-IIS-短文件&解析&蓝屏 IIS现在用的也少了&#xff0c;漏洞也基本没啥用 1、短文件&#xff1a;信息收集 2、文件解析&#xff1a;还有点用 3、HTTP.SYS&#xff1a;蓝屏崩溃 没有和权限挂钩 4、CVE-2017-7269 条件过老 windows 2003上面的漏洞 二.中…...

【SD】深入理解Stable Diffusion与ComfyUI的使用

【SD】深入理解Stable Diffusion与ComfyUI的使用 1. Stable Diffusion&#xff08;SD&#xff09;原理概述2. 各部件详解3. SD的工作流程4. ComfyUI与SD的结合5. 总结 1. Stable Diffusion&#xff08;SD&#xff09;原理概述 整体结构&#xff1a;SD不是单一模型&#xff0c;…...

Linux 12:多线程2

1. 生产者消费者模型 生产者消费者模型有三种关系&#xff0c;两个角色&#xff0c;一个交易场所。 三种关系&#xff1a; 生产者之间是什么关系?竞争 - 互斥 消费者和消费者之间?竞争 - 互斥 消费者和消费者之间?互斥和同步 两个角色&#xff1a; 生产者和消费者 一个交…...

Android RSA 加解密

文章目录 一、RSA简介二、RSA 原理介绍三、RSA 秘钥对生成1. 密钥对生成2. 获取公钥3. 获取私钥 四、PublicKey 和PrivateKey 的保存1. 获取公钥十六进制字符串1. 获取私钥十六进制字符串 五、PublicKey 和 PrivateKey 加载1. 加载公钥2. 加载私钥 六、 RSA加解密1. RSA 支持三…...

类与对象-多态-案例3-电脑组装具体实现

#include<iostream> #include<string> using namespace std; //CPU class CPU { public:virtual void calculate() 0; }; //显卡 class GraCard { public:virtual void graphics() 0; }; //存储 class Memory { public:virtual void memory() 0; }; class Compu…...

try-with-resources 语句的用途和优点有哪些,它如何自动管理资源?

在Java编程中&#xff0c;资源管理是一个重要的议题&#xff0c;尤其是当你在代码中使用那些需要显式关闭的资源&#xff0c;比如文件流、数据库连接或者网络套接字等。 如果资源使用完毕后忘记关闭&#xff0c;不仅会导致资源泄露&#xff0c;还可能引起程序性能问题甚至系统…...

GraphRAG参数与使用步骤 | 基于GPT-4o-mini实现更便宜的知识图谱RAG

首先给兄弟朋友们展示一下结论&#xff0c;一个文本18万多字&#xff0c;txt文本大小185K&#xff0c;采用GraphRAG,GPT-4o-mini模型&#xff0c;索引耗时差不多5分钟&#xff0c;消耗API价格0.15美元 GraphRAG介绍 GraphRAG是微软最近开源的一款基于知识图谱技术的框架&#…...

/秋招突击——7/21——复习{堆——数组中的第K大元素}——新作{回溯——全排列、子集、电话号码的字母组合、组合总和、括号生成}

文章目录 引言复习数组中的第K大的最大元素复习实现参考实现 新作回溯模板46 全排列个人实现参考实现 子集个人实现参考实现 电话号码的字母组合复习实现 组合总和个人实现参考实现 括号生成复习实现 总结 引言 昨天的科大讯飞笔试做的稀烂&#xff0c;今天回来好好练习一下&a…...

matlab 异常值检测与处理——Robust Z-score法

目录 一、算法原理1、概述2、主要函数3、参考文献二、代码实现三、结果展示四、相关链接本文由CSDN点云侠翻译,原文链接。如果你不是在点云侠的博客中看到该文章,那么此处便是不要脸的爬虫。 一、算法原理 1、概述 Robust Z-score法也被称为中位数绝对偏差法。它类似于Z-sc…...

Ubuntu 20安装JDK17和MySQL8.0

一.jdk 安装JDK 第一步&#xff1a;更新软件包&#xff1a;sudo apt update 第二步&#xff1a;安装JDK&#xff1a;sudo apt install openjdk-17-jdk 第三步&#xff1a;检测JDK: java -version 卸载JDK&#xff1a; 第一步&#xff1a;移除JDK包&#xff1a;apt-get purg…...

DC-1靶场打靶第一次!!!!冲冲冲!

今天打了一下DC-1这个靶场&#xff0c;感觉收获比大&#xff0c;我就来记录一下。 我的思路是下面的这个 我们先把靶机导入&#xff0c;然后与我们的liunx(攻击机)在同一个网段中&#xff0c;这也大大的减低难度。 然后我们先对自己这个网段内存活的主机进行操作&#xff0c;我…...

【LeetCode】填充每个节点的下一个右侧节点指针 II

目录 一、题目二、解法完整代码 一、题目 给定一个二叉树&#xff1a; struct Node { int val; Node *left; Node *right; Node *next; } 填充它的每个 next 指针&#xff0c;让这个指针指向其下一个右侧节点。如果找不到下一个右侧节点&#xff0c;则将 next 指针设置为 NUL…...

mac无法清空废纸篓怎么办 mac废纸篓清空了如何找回 cleanmymac误删文件怎么恢复

废纸篓相当于“一颗后悔药”&#xff0c;用于临时存储用户删除的文件。我们从从Mac上删除的文件&#xff0c;一般会进入废纸篓中。如果我们后悔了&#xff0c;可以从废纸篓中找回来。然而&#xff0c;有时我们会发现mac无法清空废纸篓&#xff0c;这是怎么回事?本文将探讨一些…...

树上启发加点分治思想

题目链接 思路&#xff1a; 对于一条链可以组成回文串&#xff0c;意味着最多只有一个奇数字母&#xff0c;比起我们记录路径各个字母的个数和&#xff0c;我们可以发现回文串实际上不在意真正的个数&#xff0c;只在意个数的奇偶。又我们发现字母只有20来个&#xff0c;可以使…...

【iOS】类对象的结构分析

目录 对象的分类object_getClass和class方法isa流程和继承链分析isa流程实例验证类的继承链实例验证 类的结构cache_t结构bits分析实例验证属性properties方法methods协议protocolsro类方法 类结构流程图解 对象的分类 OC中的对象主要可以分为3种&#xff1a;实例对象&#xf…...

接口性能优化思路

前言 日常开发中设计接口&#xff0c;响应时间是衡量一个接口质量的重要指标。 接口响应时间这里粗糙地分为三种&#xff1a; 即时响应&#xff1a;毫秒级&#xff0c;小于500毫秒快速响应&#xff1a;秒级&#xff0c;大于500毫秒且小于2秒长时间操作&#xff1a;大于2秒&a…...

PyQt5 多线程编程详细教程

PyQt5 多线程编程详细教程 在 PyQt5 中&#xff0c;多线程编程是提高应用程序性能和响应性的重要手段。本教程将详细介绍如何在 PyQt5 中使用 QThread 进行多线程编程&#xff0c;学习如何避免界面冻结和线程安全问题&#xff0c;并通过丰富的案例来展示如何实现这些功能。 Q…...

SpringBoot-17-MyBatis动态SQL标签之常用标签

文章目录 1 代码1.1 实体User.java1.2 接口UserMapper.java1.3 映射UserMapper.xml1.3.1 标签if1.3.2 标签if和where1.3.3 标签choose和when和otherwise1.4 UserController.java2 常用动态SQL标签2.1 标签set2.1.1 UserMapper.java2.1.2 UserMapper.xml2.1.3 UserController.ja…...

Docker 离线安装指南

参考文章 1、确认操作系统类型及内核版本 Docker依赖于Linux内核的一些特性&#xff0c;不同版本的Docker对内核版本有不同要求。例如&#xff0c;Docker 17.06及之后的版本通常需要Linux内核3.10及以上版本&#xff0c;Docker17.09及更高版本对应Linux内核4.9.x及更高版本。…...

STM32+rt-thread判断是否联网

一、根据NETDEV_FLAG_INTERNET_UP位判断 static bool is_conncected(void) {struct netdev *dev RT_NULL;dev netdev_get_first_by_flags(NETDEV_FLAG_INTERNET_UP);if (dev RT_NULL){printf("wait netdev internet up...");return false;}else{printf("loc…...

为什么需要建设工程项目管理?工程项目管理有哪些亮点功能?

在建筑行业&#xff0c;项目管理的重要性不言而喻。随着工程规模的扩大、技术复杂度的提升&#xff0c;传统的管理模式已经难以满足现代工程的需求。过去&#xff0c;许多企业依赖手工记录、口头沟通和分散的信息管理&#xff0c;导致效率低下、成本失控、风险频发。例如&#…...

高频面试之3Zookeeper

高频面试之3Zookeeper 文章目录 高频面试之3Zookeeper3.1 常用命令3.2 选举机制3.3 Zookeeper符合法则中哪两个&#xff1f;3.4 Zookeeper脑裂3.5 Zookeeper用来干嘛了 3.1 常用命令 ls、get、create、delete、deleteall3.2 选举机制 半数机制&#xff08;过半机制&#xff0…...

最新SpringBoot+SpringCloud+Nacos微服务框架分享

文章目录 前言一、服务规划二、架构核心1.cloud的pom2.gateway的异常handler3.gateway的filter4、admin的pom5、admin的登录核心 三、code-helper分享总结 前言 最近有个活蛮赶的&#xff0c;根据Excel列的需求预估的工时直接打骨折&#xff0c;不要问我为什么&#xff0c;主要…...

Spring Boot面试题精选汇总

&#x1f91f;致敬读者 &#x1f7e9;感谢阅读&#x1f7e6;笑口常开&#x1f7ea;生日快乐⬛早点睡觉 &#x1f4d8;博主相关 &#x1f7e7;博主信息&#x1f7e8;博客首页&#x1f7eb;专栏推荐&#x1f7e5;活动信息 文章目录 Spring Boot面试题精选汇总⚙️ **一、核心概…...

现代密码学 | 椭圆曲线密码学—附py代码

Elliptic Curve Cryptography 椭圆曲线密码学&#xff08;ECC&#xff09;是一种基于有限域上椭圆曲线数学特性的公钥加密技术。其核心原理涉及椭圆曲线的代数性质、离散对数问题以及有限域上的运算。 椭圆曲线密码学是多种数字签名算法的基础&#xff0c;例如椭圆曲线数字签…...

2025盘古石杯决赛【手机取证】

前言 第三届盘古石杯国际电子数据取证大赛决赛 最后一题没有解出来&#xff0c;实在找不到&#xff0c;希望有大佬教一下我。 还有就会议时间&#xff0c;我感觉不是图片时间&#xff0c;因为在电脑看到是其他时间用老会议系统开的会。 手机取证 1、分析鸿蒙手机检材&#x…...

大模型多显卡多服务器并行计算方法与实践指南

一、分布式训练概述 大规模语言模型的训练通常需要分布式计算技术,以解决单机资源不足的问题。分布式训练主要分为两种模式: 数据并行:将数据分片到不同设备,每个设备拥有完整的模型副本 模型并行:将模型分割到不同设备,每个设备处理部分模型计算 现代大模型训练通常结合…...