使用LSTM完成时间序列预测
c
在本教程中,我们将介绍一个简单的示例,旨在帮助初学者入门时间序列预测和 PyTorch 的使用。通过这个示例,你可以学习如何使用 LSTMCell 单元来处理时间序列数据。
我们将使用两个 LSTMCell 单元来学习从不同相位开始的正弦波信号。模型在学习了这些正弦波之后,将尝试预测未来的信号值。
使用方法
-
生成正弦波信号:
python generate_sine_wave.py
-
训练模型:
python train.py
生成正弦波训练数据
在这一步中,我们将生成用于训练的正弦波信号数据。以下是代码及其详细解释:
import numpy as np
import torch# 设置随机种子,以确保结果的可重复性
np.random.seed(2)# 定义常数 T、L 和 N
T = 20
L = 1000
N = 100# 创建一个空的 numpy 数组 x,用于存储生成的序列
x = np.empty((N, L), 'int64')# 为数组 x 赋值,每行都是一个按顺序排列的整数序列,
# 并加入了一个随机偏移量
x[:] = np.array(range(L)) + np.random.randint(-4 * T, 4 * T, N).reshape(N, 1)# 对 x 进行正弦变换,以此生成正弦波数据
data = np.sin(x / 1.0 / T).astype('float64')# 将生成的正弦波数据保存为一种 PyTorch 可读的格式
torch.save(data, open('traindata.pt', 'wb'))
代码解析
- 导入库
numpy
:用于数值计算torch
:用于深度学习中的数据处理和模型训练
- 设置随机种子
- 通过
np.random.seed(2)
设置随机种子,以保证每次运行代码时生成相同的随机数,从而使结果可重复。
- 定义常量
T
:周期长度L
:每行的序列长度N
:生成的样本数量
- 生成随机序列
- 创建一个空的 numpy 数组
x
,用于存储生成的整数序列。 - 对数组
x
进行赋值,每一行是一个按顺序排列的整数序列,加上一个随机的偏移量。偏移量的范围由np.random.randint(-4 * T, 4 * T, N).reshape(N, 1)
确定。
- 生成正弦波数据
- 对
x
进行正弦变换,生成标准的正弦波数据。np.sin(x / 1.0 / T).astype('float64')
将整数序列转换为浮点数序列,并进行正弦变换。
- 保存数据
- 使用
torch.save
将生成的正弦波数据保存为traindata.pt
,方便后续训练时加载使用。
搭建与训练时间序列预测模型
在本教程中,我们将详细讲解如何使用 PyTorch 搭建一个LSTM模型,进行时间序列预测。以下是代码及其逐行解释,我们将整个过程分为三个部分:模型定义、数据加载与预处理,以及模型训练与预测。
模型定义
首先,我们定义一个 LSTM 模型,该模型包含两个 LSTMCell 层和一个全连接层用于输出。
from __future__ import print_function
import argparse
import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt# 定义一个序列模型
class Sequence(nn.Module):def __init__(self):super(Sequence, self).__init__()# 定义两个LSTMCell层和一个全连接层self.lstm1 = nn.LSTMCell(1, 51)self.lstm2 = nn.LSTMCell(51, 51)self.linear = nn.Linear(51, 1)# 定义前向传播def forward(self, input, future = 0):outputs = []# 初始化LSTMCell的隐藏状态和细胞状态h_t = torch.zeros(input.size(0), 51, dtype=torch.double)c_t = torch.zeros(input.size(0), 51, dtype=torch.double)h_t2 = torch.zeros(input.size(0), 51, dtype=torch.double)c_t2 = torch.zeros(input.size(0), 51, dtype=torch.double)# 遍历输入序列for input_t in input.split(1, dim=1):# 更新LSTMCell的隐藏状态和细胞状态h_t, c_t = self.lstm1(input_t, (h_t, c_t))h_t2, c_t2 = self.lstm2(h_t, (h_t2, c_t2))# 通过全连接层得到输出output = self.linear(h_t2)outputs += [output]# 如果需要预测未来值for i in range(future):h_t, c_t = self.lstm1(output, (h_t, c_t))h_t2, c_t2 = self.lstm2(h_t, (h_t2, c_t2))output = self.linear(h_t2)outputs += [output]# 将输出序列拼接起来outputs = torch.cat(outputs, dim=1)return outputs
这段代码是一个简单的序列模型,包括两个LSTMCell层和一个全连接层。它接受一个输入序列,通过LSTMCell层和全连接层对输入进行处理,最终输出一个序列。如果需要预测未来值,则可以在forward函数中传入future参数来进行预测。
具体解释如下:
- 首先导入必要的库,包括torch、torch.nn等。
- 定义了一个名为Sequence的序列模型,继承自nn.Module。
- 在初始化函数中,定义了两个LSTMCell层和一个全连接层,分别是lstm1、lstm2和linear。
- forward函数用来定义模型的前向传播过程,接受输入input和可选的future参数,返回处理后的输出序列。
- 在forward函数中,首先初始化了LSTMCell的隐藏状态和细胞状态h_t、c_t、h_t2、c_t2。
- 遍历输入序列input,对每个输入进行处理,更新LSTMCell的隐藏状态和细胞状态,通过全连接层得到输出,并将输出保存在outputs列表中。
- 如果future参数大于0,表示需要预测未来值,进入一个for循环,通过当前输出不断更新LSTMCell的状态,并将预测得到的输出保存在outputs中。
- 最后将所有输出序列拼接起来,返回最终的输出。
这段代码主要实现了对输入序列的处理和未来值的预测,是一个简单的序列预测模型。
数据加载与预处理
接下来,我们加载生成的训练数据,并构建训练集和测试集。
if __name__ == '__main__':# 定义命令行参数parser = argparse.ArgumentParser()parser.add_argument('--steps', type=int, default=15, help='steps to run')opt = parser.parse_args()# 设置随机种子np.random.seed(0)torch.manual_seed(0)# 加载数据并构建训练集data = torch.load('traindata.pt')input = torch.from_numpy(data[3:, :-1])target = torch.from_numpy(data[3:, 1:])test_input = torch.from_numpy(data[:3, :-1])test_target = torch.from_numpy(data[:3, 1:])
这段代码是一个Python脚本的入口点,通常用于定义和设置命令行参数,加载数据,并准备训练数据。让我逐行解释:
-
if __name__ == '__main__':
这是Python中用来判断是否当前脚本被当做程序入口执行的一种常见方式。如果当前脚本被当做主程序执行,而不是被其他模块导入,这个条件会成立。 -
parser = argparse.ArgumentParser()
创建了一个命令行参数解析器。 -
parser.add_argument('--steps', type=int, default=15, help='steps to run')
定义了一个名为steps
的命令行参数,指定了参数的类型为整数,默认值为15,以及参数的帮助信息。 -
opt = parser.parse_args()
解析命令行参数,并将结果存储在opt
变量中。 -
np.random.seed(0)
和torch.manual_seed(0)
设置了随机数生成器的种子,用于确保实验结果的可复现性。 -
data = torch.load('traindata.pt')
从名为traindata.pt
的文件中加载数据。 -
input = torch.from_numpy(data[3:, :-1])
创建了一个PyTorch张量input
,用于存储数据中第4列到倒数第2列之间的数据。 -
target = torch.from_numpy(data[3:, 1:])
创建了一个PyTorch张量target
,用于存储数据中第4列到最后一列之间的数据。 -
test_input = torch.from_numpy(data[:3, :-1])
创建了一个PyTorch张量test_input
,用于存储数据中第1列到倒数第2列之间的数据,这是用于测试的输入数据。 -
test_target = torch.from_numpy(data[:3, 1:])
创建了一个PyTorch张量test_target
,用于存储数据中第2列到最后一列之间的数据,这是用于测试的目标数据。
这段代码的主要作用是准备数据,设置随机种子和命令行参数,为后续的数据处理和模型训练做准备。
模型训练与预测
最后,我们进行模型训练并进行预测。
# 构建模型seq = Sequence()seq.double()criterion = nn.MSELoss()# 使用LBFGS作为优化器,因为我们可以将所有数据加载到训练中optimizer = optim.LBFGS(seq.parameters(), lr=0.8)# 开始训练for i in range(opt.steps):print('STEP: ', i)def closure():optimizer.zero_grad()out = seq(input)loss = criterion(out, target)print('loss:', loss.item())loss.backward()return lossoptimizer.step(closure)# 开始预测,不需要跟踪梯度with torch.no_grad():future = 1000pred = seq(test_input, future=future)loss = criterion(pred[:, :-future], test_target)print('test loss:', loss.item())y = pred.detach().numpy()# 绘制结果plt.figure(figsize=(30,10))plt.title('Predict future values for time sequences\n(Dashlines are predicted values)', fontsize=30)plt.xlabel('x', fontsize=20)plt.ylabel('y', fontsize=20)plt.xticks(fontsize=20)plt.yticks(fontsize=20)def draw(yi, color):plt.plot(np.arange(input.size(1)), yi[:input.size(1)], color, linewidth = 2.0)plt.plot(np.arange(input.size(1), input.size(1) + future), yi[input.size(1):], color + ':', linewidth = 2.0)draw(y[0], 'r')draw(y[1], 'g')draw(y[2], 'b')plt.savefig('predict%d.pdf'%i)plt.close()
这段代码是一个简单的 PyTorch 深度学习模型训练和预测的示例。让我为您解释一下代码的主要部分:
-
首先,代码创建了一个名为 “seq” 的序列模型。然后转换这个模型为双精度数据类型。接着定义了均方误差损失函数 “criterion”。LBFGS 作为优化器,学习速率为 0.8。
-
在训练过程中,通过一个循环来进行多次优化迭代。在每次迭代中,通过闭包函数 “closure()” 来计算损失并执行反向传播,然后优化器根据损失进行参数更新。
-
接着,使用 torch.no_grad() 上下文管理器来禁止跟踪梯度,开始进行预测。在这里,预测未来的 1000 个时间步。然后计算预测结果和测试目标之间的损失,并打印损失值。
-
接下来是绘制结果的部分。代码会使用 matplotlib 库绘制预测的结果图。其中,将实线用于已知的数据部分,虚线用于预测的数据部分。最后,结果图被保存为名为 ‘predict%d.pdf’ 的文件,其中 %d 是迭代的次数。
在GPU上运行
这段代码的默认配置是使用CPU进行训练和预测。如果你想利用GPU加速训练过程,可以通过以下步骤修改代码将模型和数据放到GPU上进行计算。
以下是针对GPU的修改:
- 检查是否有可用的GPU:一般使用
torch.cuda.is_available()
来检查是否有可用的GPU。 - 将模型和数据移动到GPU:将数据和模型移动到GPU设备上进行计算。
所有涉及到数据和模型的地方都需要做相应的改动,使其可以在GPU上执行。
以下是修改后的代码:
from __future__ import print_function
import argparse
import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt# 定义一个序列模型
class Sequence(nn.Module):def __init__(self):super(Sequence, self).__init__()# 定义两个LSTMCell层和一个全连接层self.lstm1 = nn.LSTMCell(1, 51)self.lstm2 = nn.LSTMCell(51, 51)self.linear = nn.Linear(51, 1)# 定义前向传播def forward(self, input, future = 0):outputs = []# 初始化LSTMCell的隐藏状态和细胞状态h_t = torch.zeros(input.size(0), 51, dtype=input.dtype, device=input.device)c_t = torch.zeros(input.size(0), 51, dtype=input.dtype, device=input.device)h_t2 = torch.zeros(input.size(0), 51, dtype=input.dtype, device=input.device)c_t2 = torch.zeros(input.size(0), 51, dtype=input.dtype, device=input.device)# 遍历输入序列for input_t in input.split(1, dim=1):# 更新LSTMCell的隐藏状态和细胞状态h_t, c_t = self.lstm1(input_t, (h_t, c_t))h_t2, c_t2 = self.lstm2(h_t, (h_t2, c_t2))# 通过全连接层得到输出output = self.linear(h_t2)outputs += [output]# 如果需要预测未来值for i in range(future):h_t, c_t = self.lstm1(output, (h_t, c_t))h_t2, c_t2 = self.lstm2(h_t, (h_t2, c_t2))output = self.linear(h_t2)outputs += [output]# 将输出序列拼接起来outputs = torch.cat(outputs, dim=1)return outputsif __name__ == '__main__':# 定义命令行参数parser = argparse.ArgumentParser()parser.add_argument('--steps', type=int, default=15, help='steps to run')opt = parser.parse_args()# 设置随机种子np.random.seed(0)torch.manual_seed(0)# 检查是否有可用的GPUdevice = torch.device("cuda" if torch.cuda.is_available() else "cpu")# 加载数据并构建训练集data = torch.load('traindata.pt')input = torch.from_numpy(data[3:, :-1]).double().to(device)target = torch.from_numpy(data[3:, 1:]).double().to(device)test_input = torch.from_numpy(data[:3, :-1]).double().to(device)test_target = torch.from_numpy(data[:3, 1:]).double().to(device)# 构建模型seq = Sequence().double().to(device)criterion = nn.MSELoss()# 使用LBFGS作为优化器,因为我们可以将所有数据加载到训练中optimizer = optim.LBFGS(seq.parameters(), lr=0.8)# 开始训练for i in range(opt.steps):print('STEP: ', i)def closure():optimizer.zero_grad()out = seq(input)loss = criterion(out, target)print('loss:', loss.item())loss.backward()return lossoptimizer.step(closure)# 开始预测,不需要跟踪梯度with torch.no_grad():future = 1000pred = seq(test_input, future=future)loss = criterion(pred[:, :-future], test_target)print('test loss:', loss.item())y = pred.detach().cpu().numpy() # 将结果移回CPU以便绘图# 绘制结果plt.figure(figsize=(30,10))plt.title('Predict future values for time sequences\n(Dashlines are predicted values)', fontsize=30)plt.xlabel('x', fontsize=20)plt.ylabel('y', fontsize=20)plt.xticks(fontsize=20)plt.yticks(fontsize=20)def draw(yi, color):plt.plot(np.arange(input.size(1)), yi[:input.size(1)], color, linewidth = 2.0)plt.plot(np.arange(input.size(1), input.size(1) + future), yi[input.size(1):], color + ':', linewidth = 2.0)draw(y[0], 'r')draw(y[1], 'g')draw(y[2], 'b')plt.savefig('predict%d.pdf'%i)plt.close()
修改解释
-
检查GPU:
- 使用
torch.cuda.is_available()
检查是否有可用的GPU。如果有,将device
设置为cuda
,否则为cpu
。
- 使用
-
数据和模型移到GPU:
- 使用
.to(device)
方法将数据和模型移到指定设备(CPU或GPU)。 - 初始化隐藏状态和细胞状态时,指定相应的设备
device
和数据类型dtype
。
- 使用
-
绘图前将数据移回CPU:
- 由于
matplotlib
需要在 CPU 上的 numpy 数组,因此在绘图前将预测数据移回 CPU,并调用.detach().cpu().numpy()
。
- 由于
通过这些修改,你可以利用GPU来加速模型训练过程。当然,前提是你的计算机上配备了兼容的GPU。如果没有,代码将自动退回到使用CPU进行训练。
可以看到GPU明显上升
结果
STEP: 0
loss: 0.5023738122475573
loss: 0.4985663937943564
loss: 0.479011960611529
loss: 0.44633490214842303
loss: 0.35406310257493023
loss: 0.2050701661768143
loss: 1.3960531561166554
loss: 0.03249441148471743
...
test loss: 6.382565835674331e-06
STEP: 13
loss: 3.76246839739177e-06
test loss: 6.382565835674331e-06
STEP: 14
loss: 3.76246839739177e-06
test loss: 6.382565835674331e-06
得到图像:
第1次训练后:
第5次训练后:
第10次:
第15次:
相关文章:

使用LSTM完成时间序列预测
c 在本教程中,我们将介绍一个简单的示例,旨在帮助初学者入门时间序列预测和 PyTorch 的使用。通过这个示例,你可以学习如何使用 LSTMCell 单元来处理时间序列数据。 我们将使用两个 LSTMCell 单元来学习从不同相位开始的正弦波信号。模型在…...

《数据结构:顺序实现二叉树》
文章目录 一、树1、树的结构与概念2、树相关术语 二、二叉树1、概念与结构2、满二叉树3、完全二叉树 三、顺序二叉树存储结构四、实现顺序结构二叉树1、堆的概念与结构2、堆的实现3、堆的排序 一、树 1、树的结构与概念 树是一种非线性的数据结构,它是由nÿ…...

【HarmonyOS】HarmonyOS NEXT学习日记:六、渲染控制、样式结构重用
【HarmonyOS】HarmonyOS NEXT学习日记:六、渲染控制、样式&结构重用 渲染控制包含了条件渲染和循环渲染,所谓条件渲染,即更具状态不同,选择性的渲染不同的组件。 而循环渲染则是用于列表之内的、多个重复元素组成的结构中。 …...

【防火墙】防火墙NAT、智能选路综合实验
实验拓扑 实验要求 7,办公区设备可以通过电信链路和移动链路上网(多对多的NAT,并且需要保留一个公网IP不能用来转换) 8,分公司设备可以通过总公司的移动链路和电信链路访问到Dmz区的http服务器 9,多出口环境基于带宽比例进行选路…...

VUE之---slot插槽
什么是插槽 slot 【插槽】, 是 Vue 的内容分发机制, 组件内部的模板引擎使用slot 元素作为承载分发内容的出口。slot 是子组件的一个模板标签元素, 而这一个标签元素是否显示, 以及怎么显示是由父组件决定的。 VUE中slot【插槽】…...

linux、windows、macos,命令终端清屏
文章目录 LinuxWindowsmacOS 在Linux、Windows和macOS的命令终端中,清屏的命令或方法各不相同。以下是针对这三种系统的清屏方法: Linux clear命令:这是最常用的清空终端屏幕的命令之一。在终端中输入clear命令后,屏幕上的所有内容…...

【RaspberryPi】树莓派Matlab/Simulink支持包安装与使用
官网支持与兼容性 Raspberry Pi Support from MATLAB - Hardware Support - MATLAB & Simulink Raspberry Pi Support from Simulink - Hardware Support - MATLAB & Simulink Matlab与树莓派兼容性 Simulink与树莓派兼容性 树莓派Matlab&Simulink RaspberryPi支…...

嵌入式人工智能(10-基于树莓派4B的DS1302实时时钟RTC)
1、实时时钟(Real Time Clock) RTC,全称为实时时钟(Real Time Clock),是一种能够提供实时时间信息的电子设备。RTC通常包括一个计时器和一个能够记录日期和时间的电池。它可以独立于主控芯片工作ÿ…...

C++ | Leetcode C++题解之第275题H指数II
题目: 题解: class Solution { public:int hIndex(vector<int>& citations) {int n citations.size();int left 0, right n - 1;while (left < right) {int mid left (right - left) / 2;if (citations[mid] > n - mid) {right m…...
编写DockerFile
将自己的项目或者环境通过Docker部署到服务器需要一下几个步骤: 打包项目或者环境 编写Dockerfile文件 运行Dockerfile文件,构建DockerImages镜像,将DockerImages存入DockerHub或者存入阿里云镜像仓库 服务器pull下DockerImages镜像&#…...

TCP并发服务器多线程
1.创建线程‐‐pthread_create int pthread_create( pthread_t *thread, // 线程 ID 无符号长整型 const pthread_attr_t *attr, // 线程属性, NULL void *(*start_routine)(void *), // 线程处理函数 void *arg); // 线程处理函数 参数: pthrea…...
技术速递|C# 13:探索最新的预览功能
作者:Kathleen Dollard 排版:Alan Wang C# 13 已初具雏形,其新特性侧重于灵活性、性能以及使您最喜欢的功能在日常中变得更容易使用。我们以公开的方式构建 C#,在今年的 Microsoft Build 大会上,我们会让您一睹 C# 13 …...

Python设计模式:巧用元类创建单例模式!
✨ 内容: 今天我们来探讨一个高级且实用的Python概念——元类(Metaclasses)。元类是创建类的类,它们可以用来控制类的行为。通过本次练习,我们将学习如何使用元类来实现单例模式,确保某个类在整个程序中只…...

构建自主可控的工业操作系统,筑牢我国工业安全堡垒
构建自主可控的工业操作系统,筑牢我国工业安全堡垒,鸿道(Intewell)操作系统为国家工业发展保驾护航。 7月19日,全球多地安装微软操作系统的电脑设备出现大规模宕机,导致“蓝屏”现象,严重影响了航空、铁路、医疗、金…...

WPF串口通讯程序
目录 一 设计原型 二 后台源码 一 设计原型 二 后台源码 using HardwareCommunications; using System.IO.Ports; using System.Windows;namespace PortTest {/// <summary>/// Interaction logic for MainWindow.xaml/// </summary>public partial class MainW…...

汽车技术智能化程度不断提升,线束可靠性如何设计?
随着汽车技术的高速发展,汽车自动化、智能化程度的逐步提高,人们对汽车的安全性、舒适性、娱乐性等要求也不断提高,加上汽车节能减排法规的不断严峻,整车电气设备不断增加,作为连接汽车各种电器设备“神经网络”的整车…...

实现Nginx的反向代理和负载均衡
一、反向代理和负载均衡简介 1.1、反向代理 反向代理(reverse proxy)指:以代理服务器来接受Internet上的连接请求,然后将请求转发给内部网络上的服务器,并将从服务器上得到的结果返回给Internet上请求连接的客户端。此时代理服务器对外就表现为一个反向代理服务器。 反向代…...
【算法】子集
难度:中等 题目: 给你一个整数数组 nums ,数组中的元素 互不相同 。返回该数组所有可能的 子集(幂集)。 解集 不能 包含重复的子集。你可以按 任意顺序 返回解集。 示例 1: 输入:nums [1,…...

Web前端:HTML篇(一)
HTML简介: 超文本标记语言(英语:HyperText Markup Language,简称:HTML)是一种用于创建网页的标准标记语言。 您可以使用 HTML 来建立自己的 WEB 站点,HTML 运行在浏览器上,由浏览器…...
ActiViz中的选择点vtkWorldPointPicker
文章目录 1. vtkWorldPointPicker简介2. 类的位置和继承关系3. 选择机制4. 返回的信息5. 选择的条件和参数6. 与屏幕空间选择器的比较7. 性能特征8. 应用场景9. 与其他vtk选择器的集成10. 完整示例总结1. vtkWorldPointPicker简介 vtkWorldPointPicker是Visualization Toolkit…...

C++初阶-list的底层
目录 1.std::list实现的所有代码 2.list的简单介绍 2.1实现list的类 2.2_list_iterator的实现 2.2.1_list_iterator实现的原因和好处 2.2.2_list_iterator实现 2.3_list_node的实现 2.3.1. 避免递归的模板依赖 2.3.2. 内存布局一致性 2.3.3. 类型安全的替代方案 2.3.…...

springboot 百货中心供应链管理系统小程序
一、前言 随着我国经济迅速发展,人们对手机的需求越来越大,各种手机软件也都在被广泛应用,但是对于手机进行数据信息管理,对于手机的各种软件也是备受用户的喜爱,百货中心供应链管理系统被用户普遍使用,为方…...

黑马Mybatis
Mybatis 表现层:页面展示 业务层:逻辑处理 持久层:持久数据化保存 在这里插入图片描述 Mybatis快速入门 
IGP(Interior Gateway Protocol,内部网关协议) 是一种用于在一个自治系统(AS)内部传递路由信息的路由协议,主要用于在一个组织或机构的内部网络中决定数据包的最佳路径。与用于自治系统之间通信的 EGP&…...
线程与协程
1. 线程与协程 1.1. “函数调用级别”的切换、上下文切换 1. 函数调用级别的切换 “函数调用级别的切换”是指:像函数调用/返回一样轻量地完成任务切换。 举例说明: 当你在程序中写一个函数调用: funcA() 然后 funcA 执行完后返回&…...
第25节 Node.js 断言测试
Node.js的assert模块主要用于编写程序的单元测试时使用,通过断言可以提早发现和排查出错误。 稳定性: 5 - 锁定 这个模块可用于应用的单元测试,通过 require(assert) 可以使用这个模块。 assert.fail(actual, expected, message, operator) 使用参数…...

全志A40i android7.1 调试信息打印串口由uart0改为uart3
一,概述 1. 目的 将调试信息打印串口由uart0改为uart3。 2. 版本信息 Uboot版本:2014.07; Kernel版本:Linux-3.10; 二,Uboot 1. sys_config.fex改动 使能uart3(TX:PH00 RX:PH01),并让boo…...

Linux --进程控制
本文从以下五个方面来初步认识进程控制: 目录 进程创建 进程终止 进程等待 进程替换 模拟实现一个微型shell 进程创建 在Linux系统中我们可以在一个进程使用系统调用fork()来创建子进程,创建出来的进程就是子进程,原来的进程为父进程。…...
LeetCode - 199. 二叉树的右视图
题目 199. 二叉树的右视图 - 力扣(LeetCode) 思路 右视图是指从树的右侧看,对于每一层,只能看到该层最右边的节点。实现思路是: 使用深度优先搜索(DFS)按照"根-右-左"的顺序遍历树记录每个节点的深度对于…...
Spring是如何解决Bean的循环依赖:三级缓存机制
1、什么是 Bean 的循环依赖 在 Spring框架中,Bean 的循环依赖是指多个 Bean 之间互相持有对方引用,形成闭环依赖关系的现象。 多个 Bean 的依赖关系构成环形链路,例如: 双向依赖:Bean A 依赖 Bean B,同时 Bean B 也依赖 Bean A(A↔B)。链条循环: Bean A → Bean…...