预训练语言模型实践笔记
Roberta
output_hidden_states=True和last_hidden_states和pooler_output
在使用像BERT或RoBERTa这样的transformer模型时,output_hidden_states和last_hidden_state是两个不同的概念。
-
output_hidden_states: 这是一个布尔值,决定了模型是否应该返回所有隐藏层的输出。如果设置为True,模型将返回一个元组,其中包含每一层的隐藏状态。这对于某些任务(如特征提取或fine-tuning)可能是有用的,因为不同的隐藏层可能会捕获不同类型的信息。 -
last_hidden_state: 这是模型的最后一个隐藏层的输出,通常用作下游任务的输入(如文本分类或命名实体识别)。这是模型的主要输出,通常包含了输入序列的高级表示。
在大多数情况下,您只需要last_hidden_state。但是,如果您想要进行更深入的分析或实验,可以设置output_hidden_states=True以获取所有隐藏层的输出。
在您的代码中,您已经正确地获取了最后一层的[CLS]嵌入。这是通过以下代码行完成的:
result = out.last_hidden_state[:, 0]
这行代码从最后一个隐藏状态(即最后一层的输出)中获取了每个序列的第一个标记(即[CLS]标记)的嵌入。
另一种方法是在模型配置中设置output_hidden_states=True,然后从输出的隐藏状态列表中获取最后一层的[CLS]嵌入。这将返回一个包含每一层隐藏状态的列表,您可以从中选择最后一层的[CLS]嵌入。
以下是如何实现的示例:
from transformers import BertModel, BertTokenizer, BertConfig# Load pre-trained model tokenizer (vocabulary)
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')# Tokenize input
text = "[CLS] Who was Jim Henson ? [SEP] Jim Henson was a puppeteer [SEP]"
tokenized_text = tokenizer.tokenize(text)# Convert token to vocabulary indices
indexed_tokens = tokenizer.convert_tokens_to_ids(tokenized_text)# Convert inputs to PyTorch tensors
tokens_tensor = torch.tensor([indexed_tokens])# Load pre-trained model (weights)
config = BertConfig.from_pretrained('bert-base-uncased', output_hidden_states=True)
model = BertModel.from_pretrained('bert-base-uncased', config=config)# Set the model in evaluation mode to deactivate the DropOut modules
model.eval()# Predict hidden states features for each layer
with torch.no_grad():outputs = model(tokens_tensor)# `outputs` is a tuple, we are interested in the third element which is all hidden states
all_hidden_states = outputs[2]# Get the last layer's [CLS] embedding
cls_embedding = all_hidden_states[-1][0, 0]
在这个例子中,cls_embedding是一个形状为[hidden_size]的张量,包含了最后一层的[CLS]嵌入。
pooler_output
pooler_output 是一个变量,通常在自然语言处理(NLP)中,它是指经过池化(Pooling)操作后的输出。
在使用预训练的 Transformer 模型(如 BERT、RoBERTa 等)进行特征提取时,模型的每一层都会输出一个隐藏状态(Hidden State)张量,这个张量通常是 3D 的,其形状为 [batch_size, sequence_length, hidden_size]。
然而,为了进行下游任务(如分类、序列标注等),我们通常需要将这个 3D 张量转换为 2D 张量。这就需要进行池化操作。最常见的池化操作是取每个序列的第一个隐藏状态(对应于 CLS 标记),或者对所有隐藏状态进行平均或最大化。这个池化后的输出就是 pooler_output。
在 BERT 和 RoBERTa 等模型中,pooler_output 通常是取自每个序列的第一个隐藏状态,然后经过一个线性层和一个 Tanh 激活函数。其形状为 [batch_size, hidden_size],可以直接用于下游任务。
last_hidden_state 通常是一个三维张量,其形状为 [batch_size, sequence_length, hidden_size]。
当我们执行 last_hidden_state[:, 0] 时(等价于last_hidden_state[:, 0,:],我们实际上是在获取每个批次中第一个序列的所有隐藏状态。这将返回一个二维张量,其形状为 [batch_size, hidden_size]。
这个操作通常在 Transformer 模型(如 BERT、RoBERTa 等)中使用,其中每个序列的第一个隐藏状态(对应于特殊的 CLS 标记)被用作整个序列的代表,用于下游任务(如文本分类、情感分析等)。
last_hidden_state[:, 0, :] 和 last_hidden_state[:, 0]等价
是的,last_hidden_state[:, 0, :] 和 last_hidden_state[:, 0] 在这个上下文中是等价的。
在 Python 和 PyTorch 中,如果你在切片操作中省略了某个维度,那么将会选取该维度的所有数据。因此,last_hidden_state[:, 0] 实际上等价于 last_hidden_state[:, 0, :]。
这两个表达式都是选取了 last_hidden_state 张量中每个批次的第一个序列的所有隐藏状态,返回的是一个二维张量,其形状为 [batch_size, hidden_size]。
相关文章:
预训练语言模型实践笔记
Roberta output_hidden_statesTrue和last_hidden_states和pooler_output 在使用像BERT或RoBERTa这样的transformer模型时,output_hidden_states和last_hidden_state是两个不同的概念。 output_hidden_states: 这是一个布尔值,决定了模型是否应该返回所…...
Perl 哈希
Perl 哈希 Perl 哈希是一种强大的数据结构,用于存储键值对集合。它是 Perl 语言的核心特性之一,广泛应用于各种编程任务中。本文将详细介绍 Perl 哈希的概念、用法和最佳实践。 什么是 Perl 哈希? Perl 哈希是一种关联数组,其中…...
Linux之Mysql索引和优化
一、MySQL 索引 索引作为一种数据结构,其用途是用于提升数据的检索效率。 1、索引分类 - 普通索引(INDEX):索引列值可重复 - 唯一索引(UNIQUE):索引列值必须唯一,可以为NULL - 主键索引(PRIMARY KEY):索引列值必须唯一,不能为NULL,一个表只能有一个主键索引 - 全…...
springboot业务逻辑写在controller层吗
Spring Boot中的业务逻辑不应该直接写在Controller层。 在Spring Boot项目中,通常将业务逻辑分为几个层次,包括Controller层、Service层、Mapper层和Entity层。 1.其中,Controller层主要负责处理HTTP请求,通过注…...
Ubuntu 24.04 LTS 桌面安装MT4或MT5 (MetaTrader)教程
运行脚本即可在 Ubuntu 24.04 LTS Noble Linux 上轻松安装 MetaTrader 5 或 4 应用程序,使用 WineHQ 进行外汇交易。 MetaTrader 4 (MT4) 或 MetaTrader 5 是用于交易外汇对和商品的流行平台。它支持各种外汇经纪商、内置价格分析工具以及通过专家顾问 (EA) 进行自…...
Go基础编程 - 12 -流程控制
流程控制 1. 条件语句1.1. if...else 语句1.2. switch 语句1.3. select 语句1.3.1. select 语句的通信表达式1.3.2. select 的基特性1.3.3. select 的实现原理1.3.4. 经典用法1.3.4.1 超时控制1.3.4.2 多任务并发控制1.3.4.3 监听多通道消息1.3.4.4 default 实现非堵塞读写 2. …...
汽车信息安全--TLS,OpenSSL
目录 TLS相关知识 加密技术 对称加密 非对称加密 数字签名和CA 信任链 根身份证和自签名 双方TLS认证 加密和解密的性能 TLS相关知识 加密技术 TLS依赖两种加密技术 1. 对称加密(symmetric encryption) 2. 非对称加密(asymmetri…...
深入探索 SQL 中的 LIKE 右模糊匹配(LIKE RIGHT)与左模糊匹配(LIKE LEFT)
引言 在数据库操作中,LIKE 子句是执行模糊搜索的强大工具,用于匹配列中的数据与指定的模式。本文将详细介绍 LIKE 子句中的两种常用模式:右模糊匹配(LIKE RIGHT)和左模糊匹配(LIKE LEFT)&#…...
mybatis 多数据源 TDataSource required a single bean, but 2 were found
情况说明: 项目中本来就有一个数据源了,运行的好好的后来又合并了另一个项目,另一个项目也配置了数据源。 于是出现了如下错误: mybatis 多数据源 TDataSource required a single bean, but 2 were found 解决方法:…...
Dubbo SPI 之路由器
1. 背景介绍 Dubbo 是一个高性能的 Java RPC 框架,由阿里巴巴开源并广泛应用于分布式系统中。在 Dubbo 的架构中,SPI(Service Provider Interface)是一个关键组件,允许在运行时动态加载不同的服务实现。SPI 机制提供了…...
Python深度学习环境配置(Pytorch、CUDA、cuDNN),包括Anaconda搭配Pycharm的环境搭建以及基础使用教程(保姆级教程,适合小白、深度学习零基础入门)
全流程导览 一、前言二、基本介绍2.1全过程软件基本介绍2.1.1 Pytorch2.1.2 Anaconda2.1.3 Pycharm2.1.4 显卡GPU及其相关概念2.1.5 CUDA和cuDNN 2.2 各部分相互间的联系和安装逻辑关系 三、Anaconda安装3.1安装Anaconda3.2配置环境变量3.3检验是否安装成功 四、Pycharm安装五、…...
月影护眼大路灯怎么样?书客|月影|霍尼韦尔超硬核实力性能测评pk!
月影护眼大路灯怎么样?选到专业优质的护眼大路灯是真的可以使我们在用眼时减少疲劳感,达到护眼效果,但如果不慎买到劣质的护眼灯产品,不仅达不到健康的环境光,还越用越觉得眼睛疲劳感加重,在水深的护眼灯市…...
邮件安全篇:邮件传输加密(SSL/TLS or STATRTTLS)
1. 前言 使用过邮件客户端的同学一定见过下面这张图。这是客户端账号配置界面,里面有SSL、STARTTLS选项。刚接触邮件客户端的同学肯定会有这些疑问:什么是SSL?什么是STARTTLS?两者有什么区别?具体该如何选择呢&#x…...
【系统架构设计 每日一问】三 Redis支持事务么,Redis的事务如何保证
实际上,关于Redis事务的说法“Redis 的事务只能保证隔离性和一致性(I 和 C),无法保证原子性和持久性(A 和 D)”并不完全准确。下面我将分别解释Redis事务的四个特性:原子性(Atomicit…...
【中项】系统集成项目管理工程师-第4章 信息系统架构-4.3应用架构
前言:系统集成项目管理工程师专业,现分享一些教材知识点。觉得文章还不错的喜欢点赞收藏的同时帮忙点点关注。 软考同样是国家人社部和工信部组织的国家级考试,全称为“全国计算机与软件专业技术资格(水平)考试”&…...
DasViewer打开Revit输出的fbx格式的模型,为啥一团黑?
答:这个应该是没有读取到贴图文件。贴图文件和obj文件需要在同级目录下面。 DasViewer是由大势智慧自主研发的免费的实景三维模型浏览器,采用多细节层次模型逐步自适应加载技术,让用户在极低的电脑配置下,也能流畅的加载较大规模实景三维模型,提供方便快捷的数据浏览操作。 免…...
【05】LLaMA-Factory微调大模型——初尝微调模型
上文【04】LLaMA-Factory微调大模型——数据准备介绍了如何准备指令监督微调数据,为后续的微调模型提供高质量、格式规范的数据支撑。本文将正式进入模型微调阶段,构建法律垂直应用大模型。 一、硬件依赖 LLaMA-Factory框架对硬件和软件的依赖可见以下…...
Training for Stable Diffusion
1.Training for Stable Diffusion 笔记来源: 1.Denoising Diffusion Probabilistic Models 2.最大似然估计(Maximum likelihood estimation) 3.Understanding Maximum Likelihood Estimation 4.How to Solve ‘CUDA out of memory’ in PyTorch 5.pytorch-stable-d…...
初学51单片机之指针基础与串口通信应用
开始之前推荐一个电路学习软件,这个软件笔者也刚接触。名字是Circuit有在线版本和不在线版本,这是笔者在B站看视频翻到的。 Paul Falstadhttps://www.falstad.com/这是地址。 离线版本在网站内点这个进去 根据你的系统下载你需要的版本红线的是windows…...
【启明智显分享】甲醛检测仪HMI方案:ESP32-S3方案4.3寸触摸串口屏,RS485、WIFI/蓝牙可选
今年,“串串房”一词频繁引发广大网友关注。“串串房”,也被称为“陷阱房”“贩子房”——炒房客以低价收购旧房子或者毛坯房,用极度节省成本的方式对房子进行装修,之后作为精修房高价租售,因甲醛等有害物质含量极高&a…...
Docker 离线安装指南
参考文章 1、确认操作系统类型及内核版本 Docker依赖于Linux内核的一些特性,不同版本的Docker对内核版本有不同要求。例如,Docker 17.06及之后的版本通常需要Linux内核3.10及以上版本,Docker17.09及更高版本对应Linux内核4.9.x及更高版本。…...
Redis相关知识总结(缓存雪崩,缓存穿透,缓存击穿,Redis实现分布式锁,如何保持数据库和缓存一致)
文章目录 1.什么是Redis?2.为什么要使用redis作为mysql的缓存?3.什么是缓存雪崩、缓存穿透、缓存击穿?3.1缓存雪崩3.1.1 大量缓存同时过期3.1.2 Redis宕机 3.2 缓存击穿3.3 缓存穿透3.4 总结 4. 数据库和缓存如何保持一致性5. Redis实现分布式…...
Golang dig框架与GraphQL的完美结合
将 Go 的 Dig 依赖注入框架与 GraphQL 结合使用,可以显著提升应用程序的可维护性、可测试性以及灵活性。 Dig 是一个强大的依赖注入容器,能够帮助开发者更好地管理复杂的依赖关系,而 GraphQL 则是一种用于 API 的查询语言,能够提…...
《用户共鸣指数(E)驱动品牌大模型种草:如何抢占大模型搜索结果情感高地》
在注意力分散、内容高度同质化的时代,情感连接已成为品牌破圈的关键通道。我们在服务大量品牌客户的过程中发现,消费者对内容的“有感”程度,正日益成为影响品牌传播效率与转化率的核心变量。在生成式AI驱动的内容生成与推荐环境中࿰…...
【论文笔记】若干矿井粉尘检测算法概述
总的来说,传统机器学习、传统机器学习与深度学习的结合、LSTM等算法所需要的数据集来源于矿井传感器测量的粉尘浓度,通过建立回归模型来预测未来矿井的粉尘浓度。传统机器学习算法性能易受数据中极端值的影响。YOLO等计算机视觉算法所需要的数据集来源于…...
在WSL2的Ubuntu镜像中安装Docker
Docker官网链接: https://docs.docker.com/engine/install/ubuntu/ 1、运行以下命令卸载所有冲突的软件包: for pkg in docker.io docker-doc docker-compose docker-compose-v2 podman-docker containerd runc; do sudo apt-get remove $pkg; done2、设置Docker…...
OPENCV形态学基础之二腐蚀
一.腐蚀的原理 (图1) 数学表达式:dst(x,y) erode(src(x,y)) min(x,y)src(xx,yy) 腐蚀也是图像形态学的基本功能之一,腐蚀跟膨胀属于反向操作,膨胀是把图像图像变大,而腐蚀就是把图像变小。腐蚀后的图像变小变暗淡。 腐蚀…...
HashMap中的put方法执行流程(流程图)
1 put操作整体流程 HashMap 的 put 操作是其最核心的功能之一。在 JDK 1.8 及以后版本中,其主要逻辑封装在 putVal 这个内部方法中。整个过程大致如下: 初始判断与哈希计算: 首先,putVal 方法会检查当前的 table(也就…...
在Ubuntu24上采用Wine打开SourceInsight
1. 安装wine sudo apt install wine 2. 安装32位库支持,SourceInsight是32位程序 sudo dpkg --add-architecture i386 sudo apt update sudo apt install wine32:i386 3. 验证安装 wine --version 4. 安装必要的字体和库(解决显示问题) sudo apt install fonts-wqy…...
iview框架主题色的应用
1.下载 less要使用3.0.0以下的版本 npm install less2.7.3 npm install less-loader4.0.52./src/config/theme.js文件 module.exports {yellow: {theme-color: #FDCE04},blue: {theme-color: #547CE7} }在sass中使用theme配置的颜色主题,无需引入,直接可…...
