基于蜣螂算法改进的LSTM预测算法-附代码
基于蜣螂算法改进的LSTM预测算法
文章目录
- 基于蜣螂算法改进的LSTM预测算法
- 1.数据
- 2.LSTM模型
- 3.基于蜣螂算法优化的LSTM
- 4.测试结果
- 5.Matlab代码
摘要:为了提高LSTM数据的预测准确率,对LSTM中的参数利用蜣螂搜索算法进行优化。
1.数据
采用正弦信号仿真数据,数量为200。90%的数据用于训练,10%的数据用于测试。
2.LSTM模型
LSTM请自行参考相关机器学习书籍。
3.基于蜣螂算法优化的LSTM
蜣螂搜索算法的具体原理参考博客:https://blog.csdn.net/u011835903/article/details/128280084
蜣螂算法的优化参数为 LSTM网路包含的隐藏单元数目,最大训练周期,初始学习率,L2参数。适应度函数为LSTM对训练集和测试集的均方误差(MSE),均方误差MSE越低越好
finteness=MSE[predict(train)]+MSE[predict(test)]finteness = MSE[predict(train)] + MSE[predict(test)] finteness=MSE[predict(train)]+MSE[predict(test)]
4.测试结果
蜣螂参数设置如下:
%% 定义蜣螂优化参数
pop=10; %种群数量
Max_iteration=10; % 设定最大迭代次数
dim = 4;%维度,即LSTM网路包含的隐藏单元数目,最大训练周期,初始学习率,L2参数
lb = [2,2,10E-5,10E-6];%下边界
ub = [200,100,1,1];%上边界
fobj = @(x) fun(x,numFeatures,numResponses,XTrain,YTrain,XTest,YTest);
DBO-LSTM优化得到的最优参数为:
DBO-LSTM优化得到的隐藏单元数目为:166
DBO-LSTM优化得到的最大训练周期为:95
DBO-LSTM优化得到的InitialLearnRate为:0.21589
DBO-LSTM优化得到的L2Regularization为:0.21697
DBO-LSTM结果:
DBO-LSTM训练集MSE:0.021244
DBO-LSTM测试集MSE:0.061414
LSTM结果:
LSTM训练集MSE:0.00053664
LSTM测试集MSE:0.21191
从结果来看,经过改进后的优于未改进前的结果。
5.Matlab代码
相关文章:

基于蜣螂算法改进的LSTM预测算法-附代码
基于蜣螂算法改进的LSTM预测算法 文章目录基于蜣螂算法改进的LSTM预测算法1.数据2.LSTM模型3.基于蜣螂算法优化的LSTM4.测试结果5.Matlab代码摘要:为了提高LSTM数据的预测准确率,对LSTM中的参数利用蜣螂搜索算法进行优化。1.数据 采用正弦信号仿真数据&…...
Python安全开发——Scapy流量监控模块watchdog
目录 Python蓝队项目说明 (一)Python-蓝队项目-Scapy流量分析 0x01 Scapy参数介绍...
阶段二5_集合ArrayList
一.对象数组 1.对象数组使用案例 需求:将(张三,23)(李四,24)(王五,25) 封装为3个学生对象并存入数组 随后遍历数组,将学生信息输出在控制台 思路…...
十一、Python——匿名函数
1.匿名函数:简化函数定义 2.格式 lambda 参数1,参数2…:运算 3.匿名函数特点 不需要指明函数名定义只有一条语句函数体必须是一个表达式不能显示使用return 4.匿名函数实现求和 s lambda a,b:a b result s(1,2) print(result) # 35.匿名函数作…...

数组常使用的方法
1. join (原数组不受影响)该方法可以将数组里的元素,通过指定的分隔符,以字符串的形式连接起来。返回值:返回一个新的字符串const arr[1,3,4,2,5]console.log(arr.join(-);//1-3-4-2-52. push该方法可以在数组的最后面,添加一个或者多个元素结构: arr.push(值)返回值…...
2023华为软件测试笔试面试真题,抓紧收藏不然就看不到了
一、选择题 1、对计算机软件和硬件资源进行管理和控制的软件是(D) A.文件管理程序 B.输入输出管理程序 C.命令出来程序 D.操作系统 2、在没有需求文档和产品说明书的情况下只有哪一种测试方法可以进行的(A) A.错误推测法测…...

洛谷2月普及组(月赛)
🌼小宇(治愈版) - 刘大拿 - 单曲 - 网易云音乐 OI赛制且难度对标蓝桥杯省赛(😥真难,第三题做了几百年,第四题只敢骗骗分) 花了10块钱🙃 买官网的思路,结果…...

【博学谷学习记录】超强总结,用心分享 | 架构师 Spring源码学习总结
文章目录Spring的循环依赖1.循环依赖的定义&&原因2.循环依赖的场景1.构造器注入引起循环依赖2.Field属性setter注入的循环依赖3.循环依赖解决思路4.三级缓存5.面试题[三级缓存]AOP源码深度剖析概述Spring AOP的前世今生实现机制**JDK 动态代理****CGLIB 代理**流程总结…...

Linux C/C++ timeout命令实现(运行具有时间限制)
Linux附带了大量命令,每个命令都是唯一的,并在特定情况下使用。Linux timeout命令的一个属性是时间限制。可以为任何命令设置时间限制。如果时间到期,命令将停止执行。 如何使用timeout命令 我们将解释如何使用Linux timeout命令 timeout […...

西湖论剑初赛web wp
Node Magical Login 简单的js代码审计。 Flag分成了两部分。 第一部分: 这里就简单的判断了一下user是否等于admin,直接绕过。 第二部分: checkcode ! “aGr5AtSp55dRacer”,让其为真,利用数组绕过。 Flag为&#x…...
【YOLOv8/YOLOv7/YOLOv5系列算法改进NO.55】融入美团最新QARepVGG
文章目录 前言一、解决问题二、基本原理三、添加方法四、总结前言 作为当前先进的深度学习目标检测算法YOLOv8,已经集合了大量的trick,但是还是有提高和改进的空间,针对具体应用场景下的检测难点,可以不同的改进方法。此后的系列文章,将重点对YOLOv8的如何改进进行详细…...

Flutter Windows端打包并生成可安装文件流程
Windows打包 1.首先安装visual Studio 下载地址:https://visualstudio.microsoft.com/zh-hans/ 下载成功后按照下图勾选桌面应用和移动应用下的使用C的桌面开发,勾选右侧安装详细信息中的windows 11/10 sdk 中的任意一个完成安装即可 2.打包Windows …...

凸优化学习:PART3凸优化问题(持续更新)
凸优化问题 凸优化问题的广义定义: 目标函数为凸函数约束集合为凸集 一、优化问题 基本用语 一般优化问题的描述: minimizef0(x)subject to fi(x)⩽0,i1,⋯,mhi(x)0,i1,⋯,p(1)\begin{array}{ll} \operatorname{minimize} & f_0(x) \\ \text { s…...
[ue4] 着色器绑定(Shader Binding)
当我们在ue4中制作了一个美术材质之后,引擎本身会为我们做很多事情,它会把结点翻译为hlsl,生成多个shader变体,并在多个mesh pass中去选择性的调用所需的shader,其中一个重要的过程就是获取shader绑定的数据。 本文将主…...
Rust语言之迭代器
文章目录Rust迭代器Rust迭代器的实现Iterator特型IntoIterator特型for循环与迭代器迭代器类型再看for循环实现自定义迭代器方式一方式二相关参考Rust迭代器 Rust语言内置了迭代器模式,用于实现对一个项的序列进行特定的处理,通常配合for循环使用。当我们…...

TreeSet 与 TreeMap And HashSet 与 HashMap
目录 Map TreeMap put()方法 : get()方法 : Set> entrySet() (重) : foreach遍历 : Set 哈希表 哈希冲突 : 冲突避免 : 冲突解决 ---- > 比散列(开放地址法) : 开散列 (链地址法 . 开链法) 简介 : 在Java中 , TreeSet 与 TreeMap 利用搜索树实现 Ma…...

Java围棋游戏的设计与实现
技术:Java等摘要:围棋作为一个棋类竞技运动,在民间十分流行,为了熟悉五子棋规则及技巧,以及研究简单的人工智能,决定用Java开发五子棋游戏。主要完成了人机对战和玩家之间联网对战2个功能。网络连接部分为S…...
第七十三章 使用 irisstat 实用程序监控 IRIS - 使用选项运行 irisstat
文章目录第七十三章 使用 irisstat 实用程序监控 IRIS - 使用选项运行 irisstat使用选项运行 irisstatirisstat Options第七十三章 使用 irisstat 实用程序监控 IRIS - 使用选项运行 irisstat 使用选项运行 irisstat 不带选项运行 irisstat 会生成基本报告。通常,…...
【博客619】PromQL如何实现Left joins以及不同metrics之间的复杂联合查询
PromQL如何实现Left joins以及不同metrics之间的复杂联合查询 1、场景 我们需要在PromQL中实现类似SQL中的连接查询: SELECT a.value*b.value, * FROM a, b2、不同metrics之间的复杂联合查询 瞬时向量与瞬时向量之间进行数学运算: 例如:根…...

Win11自定义电脑右下角时间显示格式
Win11自定义电脑右下角时间显示格式 一、进入附加设置菜单 1、进入控制面板,选择日期和时间 2、选择修改日期和时间 3、选择修改日历设置 4、选择附加设置 二、自定义时间显示出秒 1、在选项卡中,选时间选项卡 2、在Short time的输入框中输入H:m…...

Swift 协议扩展精进之路:解决 CoreData 托管实体子类的类型不匹配问题(下)
概述 在 Swift 开发语言中,各位秃头小码农们可以充分利用语法本身所带来的便利去劈荆斩棘。我们还可以恣意利用泛型、协议关联类型和协议扩展来进一步简化和优化我们复杂的代码需求。 不过,在涉及到多个子类派生于基类进行多态模拟的场景下,…...

ABAP设计模式之---“简单设计原则(Simple Design)”
“Simple Design”(简单设计)是软件开发中的一个重要理念,倡导以最简单的方式实现软件功能,以确保代码清晰易懂、易维护,并在项目需求变化时能够快速适应。 其核心目标是避免复杂和过度设计,遵循“让事情保…...

七、数据库的完整性
七、数据库的完整性 主要内容 7.1 数据库的完整性概述 7.2 实体完整性 7.3 参照完整性 7.4 用户定义的完整性 7.5 触发器 7.6 SQL Server中数据库完整性的实现 7.7 小结 7.1 数据库的完整性概述 数据库完整性的含义 正确性 指数据的合法性 有效性 指数据是否属于所定…...

【Linux系统】Linux环境变量:系统配置的隐形指挥官
。# Linux系列 文章目录 前言一、环境变量的概念二、常见的环境变量三、环境变量特点及其相关指令3.1 环境变量的全局性3.2、环境变量的生命周期 四、环境变量的组织方式五、C语言对环境变量的操作5.1 设置环境变量:setenv5.2 删除环境变量:unsetenv5.3 遍历所有环境…...
Oracle11g安装包
Oracle 11g安装包 适用于windows系统,64位 下载路径 oracle 11g 安装包...
区块链技术概述
区块链技术是一种去中心化、分布式账本技术,通过密码学、共识机制和智能合约等核心组件,实现数据不可篡改、透明可追溯的系统。 一、核心技术 1. 去中心化 特点:数据存储在网络中的多个节点(计算机),而非…...
绕过 Xcode?使用 Appuploader和主流工具实现 iOS 上架自动化
iOS 应用的发布流程一直是开发链路中最“苹果味”的环节:强依赖 Xcode、必须使用 macOS、各种证书和描述文件配置……对很多跨平台开发者来说,这一套流程并不友好。 特别是当你的项目主要在 Windows 或 Linux 下开发(例如 Flutter、React Na…...

MySQL体系架构解析(三):MySQL目录与启动配置全解析
MySQL中的目录和文件 bin目录 在 MySQL 的安装目录下有一个特别重要的 bin 目录,这个目录下存放着许多可执行文件。与其他系统的可执行文件类似,这些可执行文件都是与服务器和客户端程序相关的。 启动MySQL服务器程序 在 UNIX 系统中,用…...
Qt Quick Controls模块功能及架构
Qt Quick Controls是Qt Quick的一个附加模块,提供了一套用于构建完整用户界面的UI控件。在Qt 6.0中,这个模块经历了重大重构和改进。 一、主要功能和特点 1. 架构重构 完全重写了底层架构,与Qt Quick更紧密集成 移除了对Qt Widgets的依赖&…...

【工具教程】多个条形码识别用条码内容对图片重命名,批量PDF条形码识别后用条码内容批量改名,使用教程及注意事项
一、条形码识别改名使用教程 打开软件并选择处理模式:打开软件后,根据要处理的文件类型,选择 “图片识别模式” 或 “PDF 识别模式”。如果是处理包含条形码的 PDF 文件,就选择 “PDF 识别模式”;若是处理图片文件&…...