《Towards Black-Box Membership Inference Attack for Diffusion Models》论文笔记
《Towards Black-Box Membership Inference Attack for Diffusion Models》
Abstract
- 识别艺术品是否用于训练扩散模型的挑战,重点是人工智能生成的艺术品中的成员推断攻击——copyright protection
- 不需要访问内部模型组件的新型黑盒攻击方法
- 展示了在评估 DALL-E 生成的数据集方面的卓越性能。
作者主张
previous methods are not yet ready for copyright protection in diffusion models.
Contributions(文章里有三点,我觉得只有两点)
- ReDiffuse:using the model’s variation API to alter an image and compare it with the original one.
- A new MIA evaluation dataset:use the image titles from LAION-5B as prompts for DALL-E’s API [31] to generate images of the same contents but different styles.
Algorithm Design
target model:DDIM
为什么要强行引入一个版权保护的概念???
定义black-box variation API
x ^ = V θ ( x , t ) \hat{x}=V_{\theta}(x,t) x^=Vθ(x,t)
细节如下:


总结为: x x x加噪变为 x t x_t xt,再通过DDIM连续降噪变为 x ^ \hat{x} x^
intuition
Our key intuition comes from the reverse SDE dynamics in continuous diffusion models.
one simplified form of the reverse SDE (i.e., the denoise step)
X t = ( X t / 2 − ∇ x log p ( X t ) ) + d W t , t ∈ [ 0 , T ] (3) X_t=(X_t/2-\nabla_x\log p(X_t))+dW_t,t\in[0,T]\tag{3} Xt=(Xt/2−∇xlogp(Xt))+dWt,t∈[0,T](3)
The key guarantee is that when the score function is learned for a data point x, then the reconstructed image x ^ i \hat{x}_i x^i is an unbiased estimator of x x x.(算是过拟合的另一种说法吧)
Hence,averaging over multiple independent samples x ^ i \hat{x}_i x^i would greatly reduce the estimation error (see Theorem 1).
On the other hand, for a non-member image x ′ x' x′, the unbiasedness of the denoised image is not guaranteed.
details of algorithm:
- independently apply the black-box variation API n times with our target image x as input
- average the output images
- compare the average result x ^ \hat{x} x^ with the original image.
evaluate the difference between the images using an indicator function:
f ( x ) = 1 [ D ( x , x ^ ) < τ ] f(x)=1[D(x,\hat{x})<\tau] f(x)=1[D(x,x^)<τ]
A sample is classified to be in the training set if D ( x , x ^ ) D(x,\hat{x}) D(x,x^) is smaller than a threshold τ \tau τ ( D ( x , x ^ ) D(x,\hat{x}) D(x,x^) represents the difference between the two images)
ReDiffuse

Theoretical Analysis
什么是sampling interval???
MIA on Latent Diffusion Models
泛化到latent diffusion model,即Stable Diffusion
ReDiffuse+
variation API for stable diffusion is different from DDIM, as it includes the encoder-decoder process.
z = E n c o d e r ( x ) , z t = α ‾ t z + 1 − α ‾ t ϵ , z ^ = Φ θ ( z t , 0 ) , x ^ = D e c o d e r ( z ^ ) (4) z={\rm Encoder}(x),\quad z_t=\sqrt{\overline{\alpha}_t}z+\sqrt{1-\overline{\alpha}_t}\epsilon,\quad \hat{z}=\Phi_{\theta}(z_t,0),\quad \hat{x}={\rm Decoder}(\hat{z})\tag{4} z=Encoder(x),zt=αtz+1−αtϵ,z^=Φθ(zt,0),x^=Decoder(z^)(4)
modification of the algorithm
independently adding random noise to the original image twice and then comparing the differences between the two restored images x ^ 1 \hat{x}_1 x^1 and x ^ 2 \hat{x}_2 x^2:
f ( x ) = 1 [ D ( x ^ 1 , x ^ 2 ) < τ ] f(x)=1[D(\hat{x}_1,\hat{x}_2)<\tau] f(x)=1[D(x^1,x^2)<τ]
Experiments
Evaluation Metrics
- AUC
- ASR
- TPR@1%FPR
same experiment’s setup in previous papers [5, 18].
| target model | DDIM | Stable Diffusion |
|---|---|---|
| version | 《Are diffusion models vulnerable to membership inference attacks?》 | original:stable diffusion-v1-5 provided by Huggingface |
| dataset | CIFAR10/100,STL10-Unlabeled,Tiny-Imagenet | member set:LAION-5B,corresponding 500 images from LAION-5;non-member set:COCO2017-val,500 images from DALL-E3 |
| T | 1000 | 1000 |
| k | 100 | 10 |
| baseline methods | [5]Are diffusion models vulnerable to membership inference attacks?: SecMIA | [18]An efficient membership inference attack for the diffusion model by proximal initialization. | [28]Membership inference attacks against diffusion models |
|---|---|---|---|
| publication | International Conference on Machine Learning | arXiv preprint | 2023 IEEE Security and Privacy Workshops (SPW) |
Ablation Studies
- The impact of average numbers
- The impact of diffusion steps
- The impact of sampling intervals
相关文章:
《Towards Black-Box Membership Inference Attack for Diffusion Models》论文笔记
《Towards Black-Box Membership Inference Attack for Diffusion Models》 Abstract 识别艺术品是否用于训练扩散模型的挑战,重点是人工智能生成的艺术品中的成员推断攻击——copyright protection不需要访问内部模型组件的新型黑盒攻击方法展示了在评估 DALL-E …...
vscode调试nextjs前端后端程序、nextjs api接口
最近有一个项目使用了nextjs框架,并且使用nextjs同时实现了前后端,由于之前前后端都是分离的,前端的调试可以通过在代码种添加debugger或者直接在浏览器中打断点实现,现在想调试后端接口,前面的方式就不适用了。故研究…...
《SeTformer Is What You Need for Vision and Language》
会议:AAAI 年份:2024 论文:DDAE: Towards Deep Dynamic Vision BERT Pretraining - AMinerhttps://www.aminer.cn/pub/6602613613fb2c6cf6c387c2/ddae-towards-deep-dynamic-vision-bert-pretraining 摘要 这篇论文介绍了一种新型的变换器…...
[保姆级教程]uniapp安装使用uViewUI教程
文章目录 创建 UniApp 项目下载uView UI下载安装方式步骤 1: 安装 uView UI步骤 2: 查看uView UI是否下载成功步骤 3: 引入 uView 主 JS 库步骤 4: 引入 uView 的全局 SCSS 主题文件步骤 5: 引入 uView 基础样式步骤 6: 配置 easycom 组件模式注意事项 NPM方式步骤 1: 安装 uVi…...
网络安全法规对企业做等保有哪些具体规定?
网络安全法规对企业做等保的具体规定 根据《中华人民共和国网络安全法》,企业作为网络运营者,需要履行网络安全等级保护制度的相关义务,确保网络安全和数据保护。具体规定包括: 网络安全等级保护制度:企业应根据网络安…...
Java开发中超好用Orika属性映射工具
Orika属性映射工具 引入pom依赖 <dependency><groupId>ma.glasnost.orika</groupId><artifactId>orika-core</artifactId><version>1.5.4</version></dependency>上干货 封装的工具类:OriUtilsimport ma.glasnost.orika.Map…...
qt初入门8:下拉框,输入框模糊查询,提示简单了解 (借助QCompleter)
实现一个简单的模糊查询的逻辑,输入框能提示相关项。 主要借助qt的QCompleter 类( Qt 框架中提供的一个用于自动补全和模糊搜索的类),结合一些控件,比如QComboBox和QLineEdit,实现模糊查询的功能。 1&…...
【qt】VS中如何配置Qt环境
https://download.qt.io/official_releases/vsaddin/ 首先需要下载一下vsaddin,上面的是下载的网站. 下载的时候可能会出现下图的情况 说明你下的vsaddin和您的VS版本不匹配,所以你可以多下几个其他版本的vsAddin,一般都是和你VS版本相匹配的才可以,如Vs2022,那就试试vsaddin2…...
对于相同网段的IP,部分无法ping通问题
现象1:在Linux上执行 ping 192.168.1.232,无法ping通 分析1:使用ifconfig查询,联网使用eth0口,只能上网192.168.10.xx网段,需要增加网段 解决方法:使用ip addr 查询,本身只具备10网…...
Unity发布XR中用于worldbuilding的全新电子书
通过身临其境的虚拟领域开始旅程,在维度之间传送,或将数字奇迹与现实世界融合——虚拟现实(VR)和混合现实(MR)的千万种可能性将邀请创作者把他们的想象力带入生活。 Unity发布的最新版综合指南将帮助有抱负的创作者和经验丰富的开发者深入研究和理解构建…...
Vue3相比于Vue2进行了哪些更新
1、响应式原理 vue2 vue2中采用 defineProperty 来劫持整个对象,然后进行深度遍历所有属性,给每个属性添加getter和setter,结合发布订阅模式实现响应式。 存在的问题: 检测不到对象属性的添加和删除数组API方法无法监听到需要对…...
Unity UGUI 之 Slider
本文仅作学习笔记与交流,不作任何商业用途 本文包括但不限于unity官方手册,唐老狮,麦扣教程知识,引用会标记,如有不足还请斧正 1.Slider是什么 滑块,由三部分组成:背景 填充条 手柄 填充条就是…...
这7款高效爬虫工具软件,非常实用!
在当今数据驱动的时代,自动化爬虫工具和软件成为了许多企业和个人获取数据的重要手段。这里会介绍6款功能强大、操作简便的自动化爬虫工具,用好了可以更高效地进行数据采集。 1. 八爪鱼采集器 八爪鱼是一款功能强大的桌面端爬虫软件,主打可…...
【OJ】二叉树相关OJ题
✨✨欢迎大家来到Celia的博客✨✨ 🎉🎉创作不易,请点赞关注,多多支持哦🎉🎉 所属专栏:OJ题 个人主页:Celias blog~ 目录 编辑 单值二叉树 题目描述 OJ-单值二叉树 解题思路 …...
Blender中保存透明图片
在Blender中保存透明图片,主要是通过在渲染设置中调整背景透明度,并选择合适的文件格式来保存图像。以下是一个详细的步骤指南: 一、设置渲染属性 打开Blender并加载你想要渲染的模型。在右侧的属性编辑器中,找到并点击“渲染属…...
MySQL之索引优化
1、在进行查询时,索引列不能是表达式的一部分,也不能是函数的参数,否则无法使用索引 例如下面的查询不能使用 actor_id 列的索引: #这是错误的 SELECT actor_id FROM sakila.actor WHERE actor_id 1 5; 优化方式:…...
Spring Boot 与 Amazon S3:快速上传与下载文件的完整指南
概要 在将 Spring Boot 更新到 3 系列时,由于 javax 需要被替换为 jakarta,因此原先依赖于 javax 的 spring-cloud-starter-aws1 将无法使用(虽然在我本地环境中仍然可以正常工作)。为了确保兼容性,我将依赖关系更改为…...
细节剖析:HTTP与HTTPS在安全性、性能等方面的不同!
HTTPS是现代互联网通信的重要基石,通过加密通信、身份验证和数据完整性保护,为数十亿用户提供了安全可靠的互联网体验。 小编整理了2GB程序员相关资料,关注微信公众号“程序员Style”回复“程序员”免费领取! 1、介绍 随着 HTT…...
MySQL面试篇章——MySQL索引
文章目录 MySQL 索引索引分类索引创建和删除索引的执行过程explain 查看执行计划explain 结果字段分析 索引的底层实现原理B-树B树哈希索引 聚集和非聚集索引MyISAM(\*.MYD,*.MYI)主键索引辅助索引(二级索引) InnoDB&a…...
WSL 2 Oracle Linux 9.1 安装配置
文章目录 环境使用体验安装 Oracle Linux 9.1修改默认存储路径默认 root 用户登录启用 systemd启用 SSH 连接WSL 无法 ping 通宿主机和域名WSL 使用主机代理(测试通过)WSL 常用命令 环境 OS:Win11 24H2 (OS 内部版本26120.1252) wsl --versio…...
AI-调查研究-01-正念冥想有用吗?对健康的影响及科学指南
点一下关注吧!!!非常感谢!!持续更新!!! 🚀 AI篇持续更新中!(长期更新) 目前2025年06月05日更新到: AI炼丹日志-28 - Aud…...
零门槛NAS搭建:WinNAS如何让普通电脑秒变私有云?
一、核心优势:专为Windows用户设计的极简NAS WinNAS由深圳耘想存储科技开发,是一款收费低廉但功能全面的Windows NAS工具,主打“无学习成本部署” 。与其他NAS软件相比,其优势在于: 无需硬件改造:将任意W…...
Prompt Tuning、P-Tuning、Prefix Tuning的区别
一、Prompt Tuning、P-Tuning、Prefix Tuning的区别 1. Prompt Tuning(提示调优) 核心思想:固定预训练模型参数,仅学习额外的连续提示向量(通常是嵌入层的一部分)。实现方式:在输入文本前添加可训练的连续向量(软提示),模型只更新这些提示参数。优势:参数量少(仅提…...
ssc377d修改flash分区大小
1、flash的分区默认分配16M、 / # df -h Filesystem Size Used Available Use% Mounted on /dev/root 1.9M 1.9M 0 100% / /dev/mtdblock4 3.0M...
【机器视觉】单目测距——运动结构恢复
ps:图是随便找的,为了凑个封面 前言 在前面对光流法进行进一步改进,希望将2D光流推广至3D场景流时,发现2D转3D过程中存在尺度歧义问题,需要补全摄像头拍摄图像中缺失的深度信息,否则解空间不收敛…...
如何为服务器生成TLS证书
TLS(Transport Layer Security)证书是确保网络通信安全的重要手段,它通过加密技术保护传输的数据不被窃听和篡改。在服务器上配置TLS证书,可以使用户通过HTTPS协议安全地访问您的网站。本文将详细介绍如何在服务器上生成一个TLS证…...
【HTML-16】深入理解HTML中的块元素与行内元素
HTML元素根据其显示特性可以分为两大类:块元素(Block-level Elements)和行内元素(Inline Elements)。理解这两者的区别对于构建良好的网页布局至关重要。本文将全面解析这两种元素的特性、区别以及实际应用场景。 1. 块元素(Block-level Elements) 1.1 基本特性 …...
leetcodeSQL解题:3564. 季节性销售分析
leetcodeSQL解题:3564. 季节性销售分析 题目: 表:sales ---------------------- | Column Name | Type | ---------------------- | sale_id | int | | product_id | int | | sale_date | date | | quantity | int | | price | decimal | -…...
拉力测试cuda pytorch 把 4070显卡拉满
import torch import timedef stress_test_gpu(matrix_size16384, duration300):"""对GPU进行压力测试,通过持续的矩阵乘法来最大化GPU利用率参数:matrix_size: 矩阵维度大小,增大可提高计算复杂度duration: 测试持续时间(秒&…...
大数据学习(132)-HIve数据分析
🍋🍋大数据学习🍋🍋 🔥系列专栏: 👑哲学语录: 用力所能及,改变世界。 💖如果觉得博主的文章还不错的话,请点赞👍收藏⭐️留言Ǵ…...
