当前位置: 首页 > news >正文

VueX快速入门(适合后端,无脑入门!!!)

文章目录

    • 前言
    • State和Mutations
      • 基础
      • 简化
    • getters
    • Mutations
    • Actions(异步)
    • Module
    • 总结


前言

作为一个没啥前端基础(就是那种跳过js直接学vue的那种。。。)的后端选手。按照自己的思路总结了一下对VueX的理解。大佬勿喷qAq。

首先我们需要明确一个点,引入VueX的使用只是用来保存和操作全局变量的。类似于后端用ThreadLocal来保存当前线程的变量
相关链接Vue官网

首先我们先来了解VueX当中的五个属性:对于快速入门的选手而言,我们只需要了解前四个属性就好了,然后优先了解其中的Satae和Mutation就行
在这里插入图片描述

这里先扔一张图,就是混个眼熟,后面会再提到
在这里插入图片描述

State和Mutations

基础

State就是用来保存全局变量的值的,比如我们可以往里面定义值;
Mutations就是用来改变state当中定义的值的,我们可以往里面定义方法来改变state的值;

下面在State当中定义了一个变量count,在Mutations当中定义了一个方法increment()对state当中的变量count进行+1操作
在这里插入图片描述

这里的this.store理解为固定写法,如果我们要使用VueX的相关操作的话,就要先写上this.$store。

我们用this.$store.state.count直接获取到了state当中count属性的值,然后写了个按钮调用add()方法.

在add()方法中。我们要调用Mutations的increment方法,我们就使用this.$store的.commit(“increment”)方法,传入的increment参数就是Mutations的increment()方法

在这里插入图片描述

点击一下,数字+1
在这里插入图片描述
当然也可以传参,比如每次+2
在这里插入图片描述

简化

你可以类比后端的lambda表达式来简化操作。看不懂就算了,记住可以这么写就行。

1、我们使用计算表达式computed定义一个count()方法替代{{this.$store.state.count}}这一串
在这里插入图片描述
2、可以使用mapState进一步简化computed
在这里插入图片描述


简化的代码看不懂没关系,记住就这么写就行。QwQ)
(入门的话看完上面两个就行了,接下来两个属性都用最简化的方式了(因为可以少写代码,只要记住这种写法就行,别问为啥)


getters

getters可以理解为对state里的值做预处理,下面当中的getters就是对todos列表做了个过滤(done为true)

下面在state当中又定义了一个列表todos,现在一共两个全局变量了。count和todos,先看上面四个箭头,我们用…mapState直接把全局变量展示到了页面。

而下面两个箭头,左边在getters里我们用doneTodos方法预处理了一下state里的todos列表,只要done为true的,然后右边箭头我们用…mapgetters获取了getters预处理后的结果

在这里插入图片描述

运行结果如下
在这里插入图片描述

Mutations

不知道刚刚的简化有没有看懂,看懂的话,你就会发现state有 …mapState,getters有…mapGetters,那么mutations有没有…mapMutations呢?也是有的,因此我们再来简化。
注意我把原来的写法注释掉了,现在看看框起来的两部分,是不是很类似,也很简洁。
在这里插入图片描述

Actions(异步)

例如这张图,值得注意的一点是,我们是通过Mutations来改变state的值,因此使用Actions来commit到Mutations然后在Mutations里面修改stated的值。
在这里插入图片描述
还有一点是同步是用this.store.commit而异步是用this.store.commit而异步是用 this.store.commit而异步是用this.store.dispatch
在这里插入图片描述
在这里插入图片描述

Module

这个可参考我的另一篇文章:若依项目学习23(前后端分离版)——前端登录整体数据流程分析(Vue2)

总结

我们在回来看这张图:组件可以获取state的值(全局变量),但是想要修改值时需要通过Actions(异步,也是通过Mutations来修改state的值,要先commit到Mutations),Mutations(同步,修改state的值)。当然,可以通过getters获取预处理过的state里的值(全局变量)
在这里插入图片描述

相关文章:

VueX快速入门(适合后端,无脑入门!!!)

文章目录前言State和Mutations基础简化gettersMutationsActions(异步)Module总结前言 作为一个没啥前端基础(就是那种跳过js直接学vue的那种。。。)的后端选手。按照自己的思路总结了一下对VueX的理解。大佬勿喷qAq。 首先我们需要…...

前列腺癌论文笔记

名词解释 MRF: 磁共振指纹打印技术( MR Fingerprinting)是近几年发展起来的最新磁共振技术,以一种全新的方法对数据进行采集、后处理和实现可视化。 MRF使用一种伪随机采集方法,取代了过去为获得个体感兴趣的参数特征而使用重复系列数据的采集方法&…...

Python+Yolov5道路障碍物识别

PythonYolov5道路障碍物识别如需安装运行环境或远程调试&#xff0c;见文章底部个人QQ名片&#xff0c;由专业技术人员远程协助&#xff01;前言这篇博客针对<<PythonYolov5道路障碍物识别>>编写代码&#xff0c;代码整洁&#xff0c;规则&#xff0c;易读。 学习与…...

全新升级,EasyV 3D高德地图组件全新上线

当我们打开任意一个可视化搭建工具或者搜索数据可视化等关键词&#xff0c;我们会发现「地图」是可视化领域中非常重要的一种形式&#xff0c;对于许多可视化应用场景都具有非常重要的意义&#xff0c;那对于EasyV&#xff0c;地图又意味着什么呢&#xff1f;EasyV作为数字孪生…...

从管理到变革,优秀管理者的进阶之路

作为一位管理者&#xff0c;了解自身需求、企业需求和用户需求是非常重要的。然而&#xff0c;仅仅满足这些需求是不够的。我们还需要进行系统化的思考&#xff0c;以了解我们可以为他人提供什么价值&#xff0c;以及在企业中扮演什么样的角色。只有清晰的自我定位&#xff0c;…...

安装Anaconda3

安装Anaconda3 下载安装文件 可以去官网下载 https://repo.anaconda.com/archive/根据自己的操作系统选择合适的Anaconda版本 我选择的是Anaconda3-2021.05-Linux-x86_64.sh的版本 方法一&#xff1a;可以下载到本地然后在上传到虚拟机 方法二&#xff1a;在终端输入以下…...

HTTPS,SSL(对称加密和非对称加密详解)

上一篇博客&#xff08;HTTP详解_徐憨憨&#xff01;的博客-CSDN博客&#xff09;详细讲解了关于HTTP的知识&#xff0c;了解到HTTP协议下的数据传输是一种明文传输&#xff0c;既然是明文传输&#xff0c;可能导致在传输过程中出现一些被篡改的情况&#xff0c;此时就需要对所…...

【数据结构】还不懂算法复杂度?一文带你速解

前言:前面我们已经系统的学完C语言的相关知识&#xff0c;现在我们已经较为熟练的掌握了C语言中的各中代码语法和结构使用&#xff0c;能够使用代码来解决一些简单问题。但是对于一个程序员来说&#xff0c;仅仅会语法是远远不够的&#xff0c;从今天开始&#xff0c;我们将进入…...

案例描述:update中,MySQL inner join 和 left join的区别,小结果集驱动大结果集

场景描述 以一个场景为例&#xff1a; 单据A&#xff1a;下游子表 &#xff08;数据量级小&#xff09; 单据B&#xff1a;下游主表&#xff08;数据量级小&#xff09; 单据C&#xff1a;中游子表&#xff08;数据量级小&#xff09; 单据D&#xff1a;中游主表&#xff08;…...

CF1784D Wooden Spoon

CF1784D Wooden Spoon 题目大意 有2n2^n2n个人&#xff0c;进行nnn轮比赛。比赛的图是一棵完全二叉树。编号小的人一定能赢编号大的人&#xff0c;如果一个人满足&#xff1a; 第一次比赛被打败打败这个人的人在第二次比赛中被打败打败上一个人的人在第三次比赛中被打败…\d…...

【数据结构】栈

文章目录&#x1f63a;前言栈初始化栈顶入栈栈顶出栈栈体判空栈的数据个数获取栈顶元素栈的销毁整体代码&#x1f63c;写在最后&#x1f63a;前言 &#x1f47b;前面我们学习了链表&#xff0c;总算是跨过一个台阶了&#xff0c;本章带大家轻松一波&#xff0c;领悟一下栈的魅力…...

C++单继承和多继承

C单继承和多继承继承单继承写法继承中构造函数的写法写法构造和析构的顺序问题多继承继承 1.继承&#xff0c;主要是遗传学中的继承概念 2.继承的写法&#xff0c;继承中的权限问题 3.继承中的构造函数的写法 继承&#xff1a;子类没有新的属性&#xff0c;或者行为的产生 父类…...

金三银四,今年企业招聘如何?

又是一年求职季&#xff0c;互联网人找工作&#xff0c;和找对象一样严谨&#xff0c;不随便放手更不随便牵手。于是挑挑拣拣&#xff0c;最后的结果可能就是把自己挑剩下了。 时间已经悄然滑进3月中旬&#xff0c;多少无处安放的青春&#xff0c;还没尘埃落定&#xff1f;优秀…...

数字信号处理:滤波、频谱

一、滤波算法 应该说数字滤波器可以有效减小50Hz工频的干扰&#xff0c;完全消除是不可能的。以20ms为最小单位的整倍数周期滤波&#xff0c;可以有效减少工频的干扰。 软件中构建 IIR 陷波或者 FIR 带阻 数字滤波器&#xff0c;消除工频干扰对测量结果的影响。 1. 自适应滤波 …...

C#等高级语言运行过程

C#等高级语言运行流程&#xff1a;假设您编写了一个 C# 程序并将其保存在一个称为源代码的文件中。特定于语言的编译器将源代码编译成 MSIL&#xff08;Microsoft 中间语言&#xff09;&#xff0c;也称为 CIL&#xff08;通用中间语言&#xff09;或 IL&#xff08;中间语言&a…...

如何优雅的用POI导入Excel文件

在企业级项目开发中&#xff0c;要经常涉及excel文件和程序之间导入导出的业务要求&#xff0c;那么今天来讲一讲excel文件导入的实现。java实现对excel的操作有很多种方式&#xff0c;例如EasyExcel等&#xff0c;今天我们使用的是POI技术实现excel文件的导入。POI技术简介1.P…...

【AI 工具】文心一言内测记录

文章目录一、申请内测二、收到内测邀请三、激活内测四、开始使用1、普通对话2、生成图片3、生成代码4、写剧本5、生成小说五、问题反馈一、申请内测 到 https://yiyan.baidu.com/welcome 页面 , 点击 " 开始体验 " 按钮 , 申请试用 ; 申请时 , 需要填写相关信息 ; 主…...

Github的使用

Github Date: March 8, 2023 Sum: Github的使用 Github 了解开源相关的概念 1. 什么是开源 2. 什么是开源许可协议 开源并不意味着完全没有限制&#xff0c;为了限制使用者的使用范围和保护作者的权利&#xff0c;每个开源项目都应该遵守开源许可协议&#xff08; Open Sou…...

抽丝剥茧还原真相,记一次神奇的崩溃

作者&#xff1a;靳倡荣 本文详细回放了一个崩溃案例的分析过程。回顾了C多态和类内存布局、pc指针与芯片异常处理、内存屏障的相关知识。 一、不讲“武德”的崩溃 1.1 查看崩溃调用栈 客户反馈了一个崩溃问题&#xff0c;并提供了core dump文件&#xff0c;查看崩溃调用栈如下…...

学习笔记八:docker资源配额

docker容器控制cpudocker容器控制cpu指定docker容器可以使用的cpu份额两个容器A、B的cpu份额分别为1000和500&#xff0c;结果会怎么样&#xff1f;给容器实例分配512权重的cpu使用份额总结CPU core核心控制扩展&#xff1a;服务器架构CPU配额控制参数的混合使用cpuset-cpus和c…...

AI-调查研究-01-正念冥想有用吗?对健康的影响及科学指南

点一下关注吧&#xff01;&#xff01;&#xff01;非常感谢&#xff01;&#xff01;持续更新&#xff01;&#xff01;&#xff01; &#x1f680; AI篇持续更新中&#xff01;&#xff08;长期更新&#xff09; 目前2025年06月05日更新到&#xff1a; AI炼丹日志-28 - Aud…...

树莓派超全系列教程文档--(61)树莓派摄像头高级使用方法

树莓派摄像头高级使用方法 配置通过调谐文件来调整相机行为 使用多个摄像头安装 libcam 和 rpicam-apps依赖关系开发包 文章来源&#xff1a; http://raspberry.dns8844.cn/documentation 原文网址 配置 大多数用例自动工作&#xff0c;无需更改相机配置。但是&#xff0c;一…...

React第五十七节 Router中RouterProvider使用详解及注意事项

前言 在 React Router v6.4 中&#xff0c;RouterProvider 是一个核心组件&#xff0c;用于提供基于数据路由&#xff08;data routers&#xff09;的新型路由方案。 它替代了传统的 <BrowserRouter>&#xff0c;支持更强大的数据加载和操作功能&#xff08;如 loader 和…...

智能在线客服平台:数字化时代企业连接用户的 AI 中枢

随着互联网技术的飞速发展&#xff0c;消费者期望能够随时随地与企业进行交流。在线客服平台作为连接企业与客户的重要桥梁&#xff0c;不仅优化了客户体验&#xff0c;还提升了企业的服务效率和市场竞争力。本文将探讨在线客服平台的重要性、技术进展、实际应用&#xff0c;并…...

el-switch文字内置

el-switch文字内置 效果 vue <div style"color:#ffffff;font-size:14px;float:left;margin-bottom:5px;margin-right:5px;">自动加载</div> <el-switch v-model"value" active-color"#3E99FB" inactive-color"#DCDFE6"…...

反射获取方法和属性

Java反射获取方法 在Java中&#xff0c;反射&#xff08;Reflection&#xff09;是一种强大的机制&#xff0c;允许程序在运行时访问和操作类的内部属性和方法。通过反射&#xff0c;可以动态地创建对象、调用方法、改变属性值&#xff0c;这在很多Java框架中如Spring和Hiberna…...

第 86 场周赛:矩阵中的幻方、钥匙和房间、将数组拆分成斐波那契序列、猜猜这个单词

Q1、[中等] 矩阵中的幻方 1、题目描述 3 x 3 的幻方是一个填充有 从 1 到 9 的不同数字的 3 x 3 矩阵&#xff0c;其中每行&#xff0c;每列以及两条对角线上的各数之和都相等。 给定一个由整数组成的row x col 的 grid&#xff0c;其中有多少个 3 3 的 “幻方” 子矩阵&am…...

OPenCV CUDA模块图像处理-----对图像执行 均值漂移滤波(Mean Shift Filtering)函数meanShiftFiltering()

操作系统&#xff1a;ubuntu22.04 OpenCV版本&#xff1a;OpenCV4.9 IDE:Visual Studio Code 编程语言&#xff1a;C11 算法描述 在 GPU 上对图像执行 均值漂移滤波&#xff08;Mean Shift Filtering&#xff09;&#xff0c;用于图像分割或平滑处理。 该函数将输入图像中的…...

使用LangGraph和LangSmith构建多智能体人工智能系统

现在&#xff0c;通过组合几个较小的子智能体来创建一个强大的人工智能智能体正成为一种趋势。但这也带来了一些挑战&#xff0c;比如减少幻觉、管理对话流程、在测试期间留意智能体的工作方式、允许人工介入以及评估其性能。你需要进行大量的反复试验。 在这篇博客〔原作者&a…...

【p2p、分布式,区块链笔记 MESH】Bluetooth蓝牙通信 BLE Mesh协议的拓扑结构 定向转发机制

目录 节点的功能承载层&#xff08;GATT/Adv&#xff09;局限性&#xff1a; 拓扑关系定向转发机制定向转发意义 CG 节点的功能 节点的功能由节点支持的特性和功能决定。所有节点都能够发送和接收网格消息。节点还可以选择支持一个或多个附加功能&#xff0c;如 Configuration …...