当前位置: 首页 > news >正文

大语言模型-检索测评指标

1. MRR (Mean Reciprocal Rank)平均倒数排名:

衡量检索结果排序质量的指标。
计算方式: 对于每个查询,计算被正确检索的文档的最高排名的倒数的平均值,再对所有查询的平均值取均值。
意义: 衡量对于多次查询,检索结果的排名,适用于评估检索结果排序效果好坏的情况。强调“顺序性”。
公式: |Q|表示查询的总次数, r a n k i rank_{i} ranki表示第i次查询中第一个准确结果的排序。
M R R = 1 ∣ Q ∣ ∑ i = 1 ∣ Q ∣ 1 r a n k i MRR = \frac{1}{{|Q|}}\sum_{i=1}^{|Q|}\frac{1}{rank_{i} } MRR=Q1i=1Qranki1

2. AP(Average Precision)平均精度:

衡量检索结果排序质量的指标。
计算方式: 一次查询结果正确结果的精确率求和除以查询结果的总数
意义: 衡量对于一个查询,检索结果中所有与 ground-truth相关的文档是否都有较高的排序。AP衡量的是整个排序的平均质量。
公式: K表示一次查询共查询K个文档,Pre代表精确率,Rel(n)表示这次查询结果中的第n个结果相关性分数,这里命中为1,未命中为0。
A P = ∑ n = 1 K P r e @ n ∗ R e l ( n ) K AP = \frac{\sum_{n=1}^{K}Pre@n*Rel(n)}{K} AP=Kn=1KPre@nRel(n)

2. MAP(Mean Average Precision)平均准确率:

衡量检索结果排序质量的指标。
计算方式: 对于每个查询,计算被正确检索的文档的平均精确率,再对所有查询的平均值取均值。
意义: 衡量对于多个查询,检索结果的平均精确率,适用于评估排序结果精确度的情况。
公式: |Q|表示查询的总次数,AP(i)表示第i次查询的平均精度。
M A P = 1 ∣ Q ∣ ∑ i = 1 ∣ Q ∣ A P ( i ) MAP = \frac{1}{{|Q|}}\sum_{i=1}^{|Q|}AP(i) MAP=Q1i=1QAP(i)

3. NDCG(Normalized Discounted Cumulative Gain)归一化折损累积增益:

衡量检索结果排序质量的指标。
计算方式: 对于每个查询,对每个被检索到的结果计算其相对于理想排序的增益值,然后对这些相对增益值进行加权求和,再除以理想排序的增益值
意义: 衡量对于一个查询,检索结果的绝对和相对排序质量,适用于评估排序结果的质量与排名准确度的情况。
公式: @k表示一次查询搜索k个文档;
N D C G @ k = D C G @ k I D C G @ k NDCG@k = \frac{DCG@k}{IDCG@k} NDCG@k=IDCG@kDCG@k
其中:
DCG@k(Discounted Cumulative Gain)代表这次k个查询结果列表中每个文档与查询的相关程度。
IDCG@k代表最理想的这次k个查询结果列表中的结果。
DCG@k的公式为: Rel(n)表示这次查询结果中的第n个结果相关性分数,这里命中为1,未命中为0。
D C G @ k = ∑ i = 1 k R e l ( i ) log ⁡ 2 i + 1 R e l ( i ) DCG@k=\sum_{i=1}^{k}\frac{Rel(i)}{\log_{2}{i+1} }Rel(i) DCG@k=i=1klog2i+1Rel(i)Rel(i)
IDCG@k是按照Rel(i)从高到低排序的DCG@k

4. Recall(召回率)

计算方式: 对于一个查询,所有被召回的样本正样本的比例。
意义: 关注于用户感兴趣的物品。
公式: 符号含义见下面的混淆矩阵。
r e c a l l = T P T P + F N recall = \frac{TP}{TP+FN} recall=TP+FNTP
在搜索任务中,R表示检索出的正确文档集合,T表示检索出的所有文档。
r e c a l l = R ∩ T T recall = \frac{R\cap T}{T} recall=TRT

5. Hit Rate(Recall@K)命中率

衡量检索结果准确性的指标。
计算方式: 对于一个查询,计算被正确检索的文档的占所有被检索的文档的比例。
意义: 衡量用户想要的项目有没有被检索到,强调预测的“准确性”。
公式:

6. Precision(精确率)

计算方式: 对于一个查询, 预测为正样本的样本中确实为正样本的比例。
意义: 关注于要推荐的物品。
公式: 符号含义见下面的混淆矩阵。
P r e = T P T P + F P Pre = \frac{TP}{TP+FP} Pre=TP+FPTP
在搜索任务中,R表示检索出的正确文档集合,T表示检索出的所有文档。
r e c a l l = R ∩ T T recall = \frac{R\cap T}{T} recall=TRT

7. Accuracy (准确率)

计算方式: 预测正确的样本所有样本中的比例。
意义: 每个样本的预测是否正确。
公式: 符号含义见下面的混淆矩阵。
A C C = T P + T N T P + F P + T N + F N ACC = \frac{TP+TN}{TP+FP+TN+FN} ACC=TP+FP+TN+FNTP+TN

参考

【基础】推荐系统常用评价指标Recall、NDCG、AUC、GAUC
信息检索与数据挖掘 | 【实验】检索评价指标MAP、MRR、NDCG
谈谈NDCG的计算

相关文章:

大语言模型-检索测评指标

1. MRR (Mean Reciprocal Rank)平均倒数排名: 衡量检索结果排序质量的指标。 计算方式: 对于每个查询,计算被正确检索的文档的最高排名的倒数的平均值,再对所有查询的平均值取均值。 意义: 衡量…...

Zookeeper集群中节点之间数据是如何同步的

1.首先集群启动时,会先进行领导者选举,确定哪个节点是Leader,哪些节点是Follower和Observer 2.然后Leader会和其他节点进行数据同步,采用发送快照和发送Diff日志的方式 3.集群在工作过程中,所有的写请求都会交给Lead…...

HTTPServer改进思路2(mudou库核心思想融入)

mudou网络库思想理解 Reactor与多线程 服务器构建过程中,不仅仅使用一个Reactor,而是使用多个Reactor,每个Reactor执行自己专属的任务,从而提高响应效率。 首先Reactor是一种事件驱动处理模式,其主要通过IO多路复用…...

Kubernetes Secret 详解

Kubernetes Secret 是一种用于存储和管理敏感信息的对象,如密码、OAuth 令牌和 SSH 密钥等。使用 Secret 可以避免将机密数据直接放在 Pod 规约或容器镜像中,从而增加了应用程序的安全性。 Secret 的类型 Kubernetes 支持多种类型的 Secret,包括: ​​Opaque​​:默认的…...

docker笔记4-部署

docker笔记4-部署 一、部署nginx二、部署Tomcat三、部署ESKibana3.1 部署ES3.2 部署kibana 一、部署nginx docker search nginx #搜索nginx的最新版本docker pull nginx #这里可以指定nginx版本,如果不指定,那么就拉取最新版本latestdocker run -d --na…...

有监督学习基础

基本概念 给定输入有为(x,y),其中x表示学习特征,y表示输出,m表示输入总数,有监督学习旨在根据输入建立能够预测可能输出的模型,大致可以分为回归和分类两种,代表可能输出是无限的或…...

揭开 AI 绘画提示词的神秘密码!

前言 ** 揭秘AI 绘画 ** 提示词的神秘密码 亲爱的朋友们,今天我们要一起探索 AI 绘画世界中那神秘的“密码”——提示词。 在 AI 绘画的奇妙领域里,提示词就像是一把神奇的钥匙,能够开启无尽的创意之门。它是我们与 AI 进行心灵对话的桥…...

macOS 10.15中屏蔽Microsoft Edge浏览器的更新提示

文章目录 1.效果对比2.安装描述文件3.停用描述文件4.高级操作(可选)参考文献 最近在macOS10.15系统,打开Microsoft Edge浏览器,每次打开都有个烦人的提示“ 要获取将来的 microsoft edge 更新,需要 macos 10.15 或更高…...

Qt 实战(3)数据类型 | 3.2、QVariant

文章目录 一、QVariant1、存储数据1.1、存储Qt内置数据1.2、存储自定义数据 2、获取数据3、判断数据类型4、清空数据5、总结 前言: QVariant是Qt框架中一个非常强大且灵活的类,它提供了一种通用的方式来存储和转换几乎任何类型的数据。无论是基本数据类型…...

Docker中安装的postgresql14在启用vector扩展的时候,找不到该扩展的控制文件。

ERROR: could not open extension control file “/usr/share/postgresql/14/extension/vector.control”: No such file or directory 进入容器 docker exec -it CONTAINER ID /bin/bash 1.更新 apt-get apt-get update 2.安装插件 #不同版本对应修改数字即可 apt-get i…...

JS防抖和节流

一、防抖和节流的适用场景 防抖(Debounce): 适合在输入框输入时的实时搜索、窗口大小调整时的resize事件等。节流(Throttle): 适合如页面滚动时的scroll事件、按钮点击时的请求发送等需要控制频率的场景。 …...

OpenWrt 为软件包和docker空间扩容

参考资料 【openwrt折腾日记】解决openwrt固件刷入后磁盘空间默认小的问题,关联openwrt磁盘扩容空间扩容【openwrt分区扩容】轻松解决空间可用不足的尴尬丨老李一瓶奶油的YouTube 划分空间 参考一瓶奶油的YouTube 系统 -> 磁盘管理 -> 磁盘 -> 修改 格…...

重要的工作任务,怎么在电脑桌面设置倒计时?

在日常工作中,我们总是面临着众多工作任务,如何高效地管理和完成这些任务成为了每个职场人的必备技能。为任务设置倒计时,不仅能让我们清晰地看到任务的先后顺序,还能帮助我们更好地把握时间,提高工作效率。想象一下&a…...

Failed to build get_cli:get:的解决方案

项目场景: 今天安装Getx命令行的时候,输入这面文档报了一个错: dart pub global activate get_cli 问题描述 提示:这里描述项目中遇到的问题: 例如:数据传输过程中数据不时出现丢失的情况,偶尔…...

短视频矩阵源码技术分享

在当今数字媒体时代,短视频已成为吸引观众和传递信息的重要手段。对于开发者而言,掌握短视频矩阵源码技术不仅是提升自身技能的需要,更是把握行业发展趋势的必然选择。本文将深入探讨短视频矩阵源码的关键技术要点及其实现方法,帮…...

轮播图自定义内容

官网&#xff1a;Swiper演示 - Swiper中文网 下载&#xff1a; npm i swiper Vue3示例代码&#xff1a; <template><div class"swiper mySwiper"><div class"swiper-wrapper"><div class"swiper-slide"><div>…...

大数据-44 Redis 慢查询日志 监视器 慢查询测试学习

点一下关注吧&#xff01;&#xff01;&#xff01;非常感谢&#xff01;&#xff01;持续更新&#xff01;&#xff01;&#xff01; 目前已经更新到了&#xff1a; Hadoop&#xff08;已更完&#xff09;HDFS&#xff08;已更完&#xff09;MapReduce&#xff08;已更完&am…...

Istio_01_Istio初识

文章目录 IstioService Mesh Istio Istio: 以服务网格形态用于服务治理的开放平台和基础设施 本质: 以非侵入式治理服务之间的访问和调用服务治理: 流量管理、可观测性、安全性可同时管理多类基础设施(多种网络方案) 如: Istio和Kubernetes架构的结合 Istio通过Kubernetes的域…...

leetcode日记(47)螺旋矩阵Ⅱ

这题思路不难&#xff0c;就是找规律太难了。 我首先的思路是一行一行来&#xff0c;根据规律填入下一行的数组&#xff0c;第i行是由前i个数字&#xff08;n-2*i&#xff09;个增序数列后i个数字组成&#xff0c;后来觉得太难找规律了就换了一种思路。 思路大致是先计算出需…...

centos系统mysql主从复制(一主一从)

文章目录 mysql80主从复制&#xff08;一主一从&#xff09;一、环境二、服务器master1操作1.开启二进制日志2. 创建复制用户3. 服务器 slave1操作4. 在主数据库中添加数据 mysql80主从复制&#xff08;一主一从&#xff09; 一、环境 准备两台服务器&#xff0c;都进行以下操…...

IDEA运行Tomcat出现乱码问题解决汇总

最近正值期末周&#xff0c;有很多同学在写期末Java web作业时&#xff0c;运行tomcat出现乱码问题&#xff0c;经过多次解决与研究&#xff0c;我做了如下整理&#xff1a; 原因&#xff1a; IDEA本身编码与tomcat的编码与Windows编码不同导致&#xff0c;Windows 系统控制台…...

CTF show Web 红包题第六弹

提示 1.不是SQL注入 2.需要找关键源码 思路 进入页面发现是一个登录框&#xff0c;很难让人不联想到SQL注入&#xff0c;但提示都说了不是SQL注入&#xff0c;所以就不往这方面想了 ​ 先查看一下网页源码&#xff0c;发现一段JavaScript代码&#xff0c;有一个关键类ctfs…...

线程同步:确保多线程程序的安全与高效!

全文目录&#xff1a; 开篇语前序前言第一部分&#xff1a;线程同步的概念与问题1.1 线程同步的概念1.2 线程同步的问题1.3 线程同步的解决方案 第二部分&#xff1a;synchronized关键字的使用2.1 使用 synchronized修饰方法2.2 使用 synchronized修饰代码块 第三部分&#xff…...

深入浅出:JavaScript 中的 `window.crypto.getRandomValues()` 方法

深入浅出&#xff1a;JavaScript 中的 window.crypto.getRandomValues() 方法 在现代 Web 开发中&#xff0c;随机数的生成看似简单&#xff0c;却隐藏着许多玄机。无论是生成密码、加密密钥&#xff0c;还是创建安全令牌&#xff0c;随机数的质量直接关系到系统的安全性。Jav…...

鸿蒙DevEco Studio HarmonyOS 5跑酷小游戏实现指南

1. 项目概述 本跑酷小游戏基于鸿蒙HarmonyOS 5开发&#xff0c;使用DevEco Studio作为开发工具&#xff0c;采用Java语言实现&#xff0c;包含角色控制、障碍物生成和分数计算系统。 2. 项目结构 /src/main/java/com/example/runner/├── MainAbilitySlice.java // 主界…...

MySQL 知识小结(一)

一、my.cnf配置详解 我们知道安装MySQL有两种方式来安装咱们的MySQL数据库&#xff0c;分别是二进制安装编译数据库或者使用三方yum来进行安装,第三方yum的安装相对于二进制压缩包的安装更快捷&#xff0c;但是文件存放起来数据比较冗余&#xff0c;用二进制能够更好管理咱们M…...

Linux nano命令的基本使用

参考资料 GNU nanoを使いこなすnano基础 目录 一. 简介二. 文件打开2.1 普通方式打开文件2.2 只读方式打开文件 三. 文件查看3.1 打开文件时&#xff0c;显示行号3.2 翻页查看 四. 文件编辑4.1 Ctrl K 复制 和 Ctrl U 粘贴4.2 Alt/Esc U 撤回 五. 文件保存与退出5.1 Ctrl …...

消息队列系统设计与实践全解析

文章目录 &#x1f680; 消息队列系统设计与实践全解析&#x1f50d; 一、消息队列选型1.1 业务场景匹配矩阵1.2 吞吐量/延迟/可靠性权衡&#x1f4a1; 权衡决策框架 1.3 运维复杂度评估&#x1f527; 运维成本降低策略 &#x1f3d7;️ 二、典型架构设计2.1 分布式事务最终一致…...

微服务通信安全:深入解析mTLS的原理与实践

&#x1f525;「炎码工坊」技术弹药已装填&#xff01; 点击关注 → 解锁工业级干货【工具实测|项目避坑|源码燃烧指南】 一、引言&#xff1a;微服务时代的通信安全挑战 随着云原生和微服务架构的普及&#xff0c;服务间的通信安全成为系统设计的核心议题。传统的单体架构中&…...

RushDB开源程序 是现代应用程序和 AI 的即时数据库。建立在 Neo4j 之上

一、软件介绍 文末提供程序和源码下载 RushDB 改变了您处理图形数据的方式 — 不需要 Schema&#xff0c;不需要复杂的查询&#xff0c;只需推送数据即可。 二、Key Features ✨ 主要特点 Instant Setup: Be productive in seconds, not days 即时设置 &#xff1a;在几秒钟…...