当前位置: 首页 > news >正文

LLM模型与实践之基于MindSpore的GPT2文本摘要

前言

安装环境

!pip install tokenizers==0.15.0 -i https://pypi.tuna.tsinghua.edu.cn/simple
# 该案例在 mindnlp 0.3.1 版本完成适配,如果发现案例跑不通,可以指定mindnlp版本,执行`!pip install mindnlp==0.3.1`
!pip install mindnlp

数据加载

from mindnlp.utils import http_get# download dataset
url = 'https://download.mindspore.cn/toolkits/mindnlp/dataset/text_generation/nlpcc2017/train_with_summ.txt'
path = http_get(url, './')

数据预处理

原始数据格式:

article: [CLS] article_context [SEP]
summary: [CLS] summary_context [SEP]

预处理后的数据格式:

[CLS] article_context [SEP] summary_context [SEP]
import json
import numpy as np# preprocess dataset
def process_dataset(dataset, tokenizer, batch_size=6, max_seq_len=1024, shuffle=False):def read_map(text):data = json.loads(text.tobytes())return np.array(data['article']), np.array(data['summarization'])def merge_and_pad(article, summary):# tokenization# pad to max_seq_length, only truncate the articletokenized = tokenizer(text=article, text_pair=summary,padding='max_length', truncation='only_first', max_length=max_seq_len)return tokenized['input_ids'], tokenized['input_ids']dataset = dataset.map(read_map, 'text', ['article', 'summary'])# change column names to input_ids and labels for the following trainingdataset = dataset.map(merge_and_pad, ['article', 'summary'], ['input_ids', 'labels'])dataset = dataset.batch(batch_size)if shuffle:dataset = dataset.shuffle(batch_size)return dataset

模型构建

from mindspore import ops
from mindnlp.transformers import GPT2LMHeadModelclass GPT2ForSummarization(GPT2LMHeadModel):def construct(self,input_ids = None,attention_mask = None,labels = None,):outputs = super().construct(input_ids=input_ids, attention_mask=attention_mask)shift_logits = outputs.logits[..., :-1, :]shift_labels = labels[..., 1:]# Flatten the tokensloss = ops.cross_entropy(shift_logits.view(-1, shift_logits.shape[-1]), shift_labels.view(-1), ignore_index=tokenizer.pad_token_id)return loss

模型训练

模型推理

def process_test_dataset(dataset, tokenizer, batch_size=1, max_seq_len=1024, max_summary_len=100):def read_map(text):data = json.loads(text.tobytes())return np.array(data['article']), np.array(data['summarization'])def pad(article):tokenized = tokenizer(text=article, truncation=True, max_length=max_seq_len-max_summary_len)return tokenized['input_ids']dataset = dataset.map(read_map, 'text', ['article', 'summary'])dataset = dataset.map(pad, 'article', ['input_ids'])dataset = dataset.batch(batch_size)return dataset

总结

使用mindnlp库实现GPT2模型进行文本摘要,采用BertTokenizer进行分词, 使用线性预热和衰减的学习率策略进行模型训练. 通过多种数据预处理和模型优化技术, 训练并部署模型进行文本摘要推理. 

相关文章:

LLM模型与实践之基于MindSpore的GPT2文本摘要

前言 安装环境 !pip install tokenizers0.15.0 -i https://pypi.tuna.tsinghua.edu.cn/simple # 该案例在 mindnlp 0.3.1 版本完成适配,如果发现案例跑不通,可以指定mindnlp版本,执行!pip install mindnlp0.3.1 !pip install mindnlp 数据加…...

【Android】使用视图绑定ViewBinding来代替findViewById

文章目录 介绍作用用法开启ViewBinding功能自动生成绑定类在Activity中使用访问视图控件 区别 介绍 ViewBinding 是 Android 开发中的一个功能,它简化了访问视图的过程,避免了使用 findViewById 的繁琐步骤。它通过生成与布局文件相对应的绑定类&#xf…...

字符的统计——423、657、551、696、467、535

423. 从英文中重建数字 最初思路 首先要有一个指针,对于3/4/5为一组地跳跃。起初想的是后瞻性,如果符合0-9任意,则更换index、跳跃。此时写了一个函数,用来判断s的截取段和0-9中有无符合。这个思路并没有进行下去,虽然…...

pytest+allure

安装 下载:github win环境下载zip 环境变量: pycharm: pip install allure-pytest 验证安装 生成结果: if __name__ __main__:pytest.main([-s,test_createTag2.py,--alluredir,result]) 生成报告: allure gener…...

【数据结构】AVL树(平衡二叉搜索树)

文章目录 1.AVL树1.1 AVL树的概念1.2 AVL树节点的定义1.3 AVL树的插入1.4 AVL树的旋转1.4.1 左单旋1.4.2 右单旋1.4.3 右左双旋1.4.4 左右双旋 1.5 AVL树的平衡验证1.6 AVL树的删除1.7 AVL树的性能 1.AVL树 在前面,我们已经介绍过了二叉搜索树,也了解到…...

ASP.NET Web Api 使用 EF 6,DateTime 字段如何取数据库服务器当前时间

前言 在做数据库设计时,为了方便进行数据追踪,通常会有几个字段是每个表都有的,比如创建时间、创建人、更新时间、更新人、备注等,在存储这些时间时,要么存储 WEB 服务器的时间,要么存储数据库服务器的时间…...

【HarmonyOS】应用设置屏幕常亮

【HarmonyOS】应用设置屏幕常亮 一、问题背景: 金融类或钱包场景的应用APP,对于付款码,扫一扫等场景都会对屏幕设置常亮。防止屏幕长时间不操作,自动息屏。 目前这种场景的需求也是非常有必要的,也是行业内默认的处理…...

Docker部署Elasticsearch8.6.0 Kibana8.6.0

(1)Docker部署Elasticsearch8.5.3(失败…) 为了匹配springboot3.0.x,安装Elasticsearch:8.5.3 拉取镜像,遇到问题! [rootserver01 ~]# docker pull elasticsearch:8.5.3 8.5.3: Pulling from…...

第四篇论文小记

一、第一次投稿 期刊:《Remote Sensing》 研究方向:人工智能应用 投稿结果:已投被拒 投稿周期:3天 最后更新时间:19 July 2024 投稿流程: 状态时间Pending review16 July 2024Reject by editor19 July …...

python使用 tkinter 生成随机颜色

先看效果: 只要不停点击底部的按钮,每次都会生成新的颜色。炫酷啊。 import random import tkinter import tkinter.messagebox from tkinter import Button# todo """ 1. 设置一个按钮,来让用户选择是否显示颜色值 2. 把按钮换成 Label…...

【Linux学习 | 第1篇】Linux介绍+安装

文章目录 Linux1. Linux简介1.1 不同操作系统1.2 Linux系统版本 2. Linux安装2.1 安装方式2.2 网卡设置2.3 安装SSH连接工具2.4 Linux和Windows目录结构对比 Linux 1. Linux简介 1.1 不同操作系统 桌面操作系统 Windows (用户数量最多)MacOS ( 操作体验好,办公人…...

设计模式-抽象工厂

抽象工厂属于创建型模式。 抽象工厂和工厂设计模式的区别: 工厂模式的是设计模式中最简单的一种设计模式,主要设计思想是,分离对象的创建和使用,在Java中,如果需要使用一个对象时,需要new Class()&#xff…...

Ubunton-24.04 简单配置使用

目录 1.设置 root 密码 2. 防火墙设置 1. 安装防火墙 2. 开启和关闭防火墙 3. 开放端口和服务规则 4. 关闭端口和删除服务规则 5 查看防火墙状态 3. 设置网络 1.设置 root 密码 1. 切换到 root 用户,并输入当前登录账号的密码 sudo -i 2. 设置新密码&#xf…...

什么是STP环路保护

在运行生成树协议的网络中,根端口和其他阻塞端口状态是依靠不断接收来自上游设备的BPDU维持。当由于链路拥塞或者单向链路故障导致这些端口收不到来自上游交换设备的BPDU时,设备会重新选择根端口。原先的根端口会转变为指定端口,而原先的阻塞…...

Python算法基础:解锁冒泡排序与选择排序的奥秘

在数据处理和算法设计中,排序是一项基础且重要的操作。本文将介绍两种经典的排序算法:冒泡排序(Bubble Sort)和选择排序(Selection Sort)。我们将通过示例代码来演示这两种算法如何对列表进行升序排列。 一…...

QtCMake工程提升类后找不到头文件

链接: QtCMake工程提升类后找不到头文件_qt提升类找不到头文件-CSDN博客 重点: 1.原因:出现问题的原因是Qt creator通过ui文件生成的程序和存放头文件的目录不在一起,但是生成的程序里会在生成目录下找头文件,所以肯…...

Docker核心技术:Docker原理之Cgroups

云原生学习路线导航页(持续更新中) 本文是 Docker核心技术 系列文章:Docker原理之Cgroups,其他文章快捷链接如下: 应用架构演进容器技术要解决哪些问题Docker的基本使用Docker是如何实现的 Docker核心技术:…...

union的特性和大小端

一、union在c和c语言中的特性 1.共享内存空间:union的所有成员共享同一块内存空间。意味着在同一时刻,union 只能存储其成员 中的一个值。当你修改了union中的一个成员,那么其它成员的值也会被改变,因为它们实际上都是指向同一块…...

个性化IT服务探索实践

探索和实践个性化IT服务,可以为用户提供更优质、定制化的解决方案,从而提升用户体验和满意度。以下是一些具体的步骤和建议,帮助自己在未来探索和实践个性化IT服务。 一、了解用户需求 用户调研和反馈: 进行用户调研,了解用户的需求和痛点。收集用户反馈,通过问卷、采访…...

UE4-打包游戏,游戏模式,默认关卡

一.打包游戏 注意windows系统无法打包苹果系统的执行包,只能使用苹果系统打包。 打包完之后是一个.exe文件。 打包要点: 1.确定好要操控的角色和生成位置。 2.设置默认加载的关卡和游戏模式。 在这个界面可以配置游戏的默认地图和游戏的模式,…...

渗透实战PortSwigger靶场-XSS Lab 14:大多数标签和属性被阻止

<script>标签被拦截 我们需要把全部可用的 tag 和 event 进行暴力破解 XSS cheat sheet&#xff1a; https://portswigger.net/web-security/cross-site-scripting/cheat-sheet 通过爆破发现body可以用 再把全部 events 放进去爆破 这些 event 全部可用 <body onres…...

CentOS下的分布式内存计算Spark环境部署

一、Spark 核心架构与应用场景 1.1 分布式计算引擎的核心优势 Spark 是基于内存的分布式计算框架&#xff0c;相比 MapReduce 具有以下核心优势&#xff1a; 内存计算&#xff1a;数据可常驻内存&#xff0c;迭代计算性能提升 10-100 倍&#xff08;文档段落&#xff1a;3-79…...

页面渲染流程与性能优化

页面渲染流程与性能优化详解&#xff08;完整版&#xff09; 一、现代浏览器渲染流程&#xff08;详细说明&#xff09; 1. 构建DOM树 浏览器接收到HTML文档后&#xff0c;会逐步解析并构建DOM&#xff08;Document Object Model&#xff09;树。具体过程如下&#xff1a; (…...

什么?连接服务器也能可视化显示界面?:基于X11 Forwarding + CentOS + MobaXterm实战指南

文章目录 什么是X11?环境准备实战步骤1️⃣ 服务器端配置(CentOS)2️⃣ 客户端配置(MobaXterm)3️⃣ 验证X11 Forwarding4️⃣ 运行自定义GUI程序(Python示例)5️⃣ 成功效果![在这里插入图片描述](https://i-blog.csdnimg.cn/direct/55aefaea8a9f477e86d065227851fe3d.pn…...

python执行测试用例,allure报乱码且未成功生成报告

allure执行测试用例时显示乱码&#xff1a;‘allure’ &#xfffd;&#xfffd;&#xfffd;&#xfffd;&#xfffd;ڲ&#xfffd;&#xfffd;&#xfffd;&#xfffd;ⲿ&#xfffd;&#xfffd;&#xfffd;Ҳ&#xfffd;&#xfffd;&#xfffd;ǿ&#xfffd;&am…...

Python基于历史模拟方法实现投资组合风险管理的VaR与ES模型项目实战

说明&#xff1a;这是一个机器学习实战项目&#xff08;附带数据代码文档&#xff09;&#xff0c;如需数据代码文档可以直接到文章最后关注获取。 1.项目背景 在金融市场日益复杂和波动加剧的背景下&#xff0c;风险管理成为金融机构和个人投资者关注的核心议题之一。VaR&…...

Linux系统部署KES

1、安装准备 1.版本说明V008R006C009B0014 V008&#xff1a;是version产品的大版本。 R006&#xff1a;是release产品特性版本。 C009&#xff1a;是通用版 B0014&#xff1a;是build开发过程中的构建版本2.硬件要求 #安全版和企业版 内存&#xff1a;1GB 以上 硬盘&#xf…...

C++_哈希表

本篇文章是对C学习的哈希表部分的学习分享 相信一定会对你有所帮助~ 那咱们废话不多说&#xff0c;直接开始吧&#xff01; 一、基础概念 1. 哈希核心思想&#xff1a; 哈希函数的作用&#xff1a;通过此函数建立一个Key与存储位置之间的映射关系。理想目标&#xff1a;实现…...

ubuntu中安装conda的后遗症

缘由: 在编译rk3588的sdk时&#xff0c;遇到编译buildroot失败&#xff0c;提示如下&#xff1a; 提示缺失expect&#xff0c;但是实测相关工具是在的&#xff0c;如下显示&#xff1a; 然后查找借助各个ai工具&#xff0c;重新安装相关的工具&#xff0c;依然无解。 解决&am…...

工厂方法模式和抽象工厂方法模式的battle

1.案例直接上手 在这个案例里面&#xff0c;我们会实现这个普通的工厂方法&#xff0c;并且对比这个普通工厂方法和我们直接创建对象的差别在哪里&#xff0c;为什么需要一个工厂&#xff1a; 下面的这个是我们的这个案例里面涉及到的接口和对应的实现类&#xff1a; 两个发…...