Spark实时(三):Structured Streaming入门案例

文章目录
Structured Streaming入门案例
一、Scala代码如下
二、Java 代码如下
三、以上代码注意点如下
Structured Streaming入门案例
我们使用Structured Streaming来监控socket数据统计WordCount。这里我们使用Spark版本为3.4.3版本,首先在Maven pom文件中导入以下依赖:
<!-- 配置以下可以解决 在jdk1.8环境下打包时报错 “-source 1.5 中不支持 lambda 表达式” --><properties><project.build.sourceEncoding>UTF-8</project.build.sourceEncoding><maven.compiler.source>1.8</maven.compiler.source><maven.compiler.target>1.8</maven.compiler.target><spark.version>3.4.3</spark.version></properties><dependencies><!-- Spark-core --><dependency><groupId>org.apache.spark</groupId><artifactId>spark-core_2.12</artifactId><version>${spark.version}</version></dependency><!-- SparkSQL --><dependency><groupId>org.apache.spark</groupId><artifactId>spark-sql_2.12</artifactId><version>${spark.version}</version></dependency><!-- SparkSQL ON Hive--><dependency><groupId>org.apache.spark</groupId><artifactId>spark-hive_2.12</artifactId><version>${spark.version}</version></dependency><!--mysql依赖的jar包--><dependency><groupId>mysql</groupId><artifactId>mysql-connector-java</artifactId><version>5.1.47</version></dependency><!--SparkStreaming--><dependency><groupId>org.apache.spark</groupId><artifactId>spark-streaming_2.12</artifactId><version>${spark.version}</version></dependency><!-- Kafka 0.10+ Source For Structured Streaming--><dependency><groupId>org.apache.spark</groupId><artifactId>spark-sql-kafka-0-10_2.12</artifactId><version>${spark.version}</version></dependency><!-- 向kafka 生产数据需要包 --><dependency><groupId>org.apache.kafka</groupId><artifactId>kafka-clients</artifactId><version>2.8.0</version></dependency><!-- Scala 包--><dependency><groupId>org.scala-lang</groupId><artifactId>scala-library</artifactId><version>2.12.15</version></dependency><dependency><groupId>org.scala-lang</groupId><artifactId>scala-compiler</artifactId><version>2.12.15</version></dependency><dependency><groupId>org.scala-lang</groupId><artifactId>scala-reflect</artifactId><version>2.12.15</version></dependency><dependency><groupId>log4j</groupId><artifactId>log4j</artifactId><version>1.2.12</version></dependency><dependency><groupId>com.google.collections</groupId><artifactId>google-collections</artifactId><version>1.0</version></dependency></dependencies>
一、Scala代码如下
package com.lanson.structuredStreaming/*** Structured Streaming 实时读取Socket数据*/import org.apache.spark.sql.streaming.StreamingQuery
import org.apache.spark.sql.{DataFrame, Dataset, SparkSession}/*** Structured Streaming 读取Socket数据*/
object SSReadSocketData {def main(args: Array[String]): Unit = {//1.创建SparkSession对象val spark: SparkSession = SparkSession.builder().master("local").appName("StructuredSocketWordCount")//默认200个并行度,由于源头数据量少,可以设置少一些并行度.config("spark.sql.shuffle.partitions",1).getOrCreate()import spark.implicits._spark.sparkContext.setLogLevel("Error")//2.读取Socket中的每行数据,生成DataFrame默认列名为"value"val lines: DataFrame = spark.readStream.format("socket").option("host", "node3").option("port", 9999).load()//3.将每行数据切分成单词,首先通过as[String]转换成Dataset操作val words: Dataset[String] = lines.as[String].flatMap(line=>{line.split(" ")})//4.按照单词分组,统计个数,自动多一个列countval wordCounts: DataFrame = words.groupBy("value").count()//5.启动流并向控制台打印结果val query: StreamingQuery = wordCounts.writeStream//更新模式设置为complete.outputMode("complete").format("console").start()query.awaitTermination()}}
二、Java 代码如下
package com.lanson.structuredStreaming;import java.util.Arrays;
import java.util.Iterator;
import java.util.concurrent.TimeoutException;
import org.apache.spark.api.java.function.FlatMapFunction;
import org.apache.spark.sql.Dataset;
import org.apache.spark.sql.Encoders;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.SparkSession;
import org.apache.spark.sql.streaming.StreamingQuery;
import org.apache.spark.sql.streaming.StreamingQueryException;public class SSReadSocketData01 {public static void main(String[] args) throws StreamingQueryException, TimeoutException {SparkSession spark = SparkSession.builder().master("local").appName("SSReadSocketData01").config("spark.sql.shuffle.partitions", 1).getOrCreate();spark.sparkContext().setLogLevel("Error");Dataset<Row> lines = spark.readStream().format("socket").option("host", "node3").option("port", 9999).load();Dataset<String> words = lines.as(Encoders.STRING()).flatMap(new FlatMapFunction<String, String>() {@Overridepublic Iterator<String> call(String line) throws Exception {return Arrays.asList(line.split(" ")).iterator();}}, Encoders.STRING());Dataset<Row> wordCounts = words.groupBy("value").count();StreamingQuery query = wordCounts.writeStream().outputMode("complete").format("console").start();query.awaitTermination();}
}

以上代码编写完成之后,在node3节点执行“nc -lk 9999”启动socket服务器,然后启动代码,向socket中输入以下数据:
第一次输入:a b c
第二次输入:d a c
第三次输入:a b c
可以看到控制台打印如下结果:
-------------------------------------------
Batch: 1
-------------------------------------------
+-----+-----+
|value|count|
+-----+-----+
| c| 1|
| b| 1|
| a| 1|
+-----+-----+-------------------------------------------
Batch: 2
-------------------------------------------
+-----+-----+
|value|count|
+-----+-----+
| d| 1|
| c| 2|
| b| 1|
| a| 2|
+-----+-----+-------------------------------------------
Batch: 3
-------------------------------------------
+-----+-----+
|value|count|
+-----+-----+
| d| 1|
| c| 3|
| b| 2|
| a| 3|
+-----+-----+
三、以上代码注意点如下
- SparkSQL 默认并行度为200,这里由于数据量少,可以将并行度通过参数“spark.sql.shuffle.partitions”设置少一些。
- StructuredStreaming读取过来数据默认是DataFrame,默认有“value”名称的列
- 对获取的DataFrame需要通过as[String]转换成Dataset进行操作
- 结果输出时的OutputMode有三种输出模式:Complete Mode、Append Mode、Update Mode。
- 📢博客主页:https://lansonli.blog.csdn.net
- 📢欢迎点赞 👍 收藏 ⭐留言 📝 如有错误敬请指正!
- 📢本文由 Lansonli 原创,首发于 CSDN博客🙉
- 📢停下休息的时候不要忘了别人还在奔跑,希望大家抓紧时间学习,全力奔赴更美好的生活✨
相关文章:
Spark实时(三):Structured Streaming入门案例
文章目录 Structured Streaming入门案例 一、Scala代码如下 二、Java 代码如下 三、以上代码注意点如下 Structured Streaming入门案例 我们使用Structured Streaming来监控socket数据统计WordCount。这里我们使用Spark版本为3.4.3版本,首先在Maven pom文件中导…...
《Java初阶数据结构》----4.<线性表---Stack栈和Queue队列>
前言 大家好,我目前在学习java。之前也学了一段时间,但是没有发布博客。时间过的真的很快。我会利用好这个暑假,来复习之前学过的内容,并整理好之前写过的博客进行发布。如果博客中有错误或者没有读懂的地方。热烈欢迎大家在评论区…...
Android SurfaceFlinger——关联EGL三要素(二十七)
通过前面的文章我们得到了 EGL 的三要素——Display、Surface 和 Context。其中,Display 是一个图形显示系统或者硬件屏幕,Surface 代表一个可以被渲染的图像缓冲区,Context 包含了 OpenGL ES 的状态信息和资源,它是执行 OpenGL 命令的环境。下一步就是调用 eglMakeCurrent…...
Unity3D之TCP网络通信(客户端)
文章目录 概述TCP核心类异步机制 Unity中创建TCP客户端Unity中其它脚本获取TCP客户端接受到的数据后续改进 本文将以Unity3D应用项目作为客户端去连接制定的服务器为例进行相关说明。 Unity官网参考资料: https://developer.unity.cn/projects/6572ea1bedbc2a001ef…...
Kotlin 中 标准库函数
在 Kotlin 中,标准库提供了许多实用的函数,这些函数可以帮助简化代码、提高效率,以下是一些常用的标准库函数及其功能: let: let 函数允许你在对象上执行一个操作,并返回结果。它通常与安全调用操作符 ?. 一起使用&a…...
【教学类-69-01】20240721铠甲勇士扑克牌(随机14个数字+字母)涂色(男孩篇)
背景需求: 【教学类-68-01】20240720裙子涂色(女孩篇)-CSDN博客文章浏览阅读250次。【教学类-68-01】20240720裙子涂色(女孩篇)https://blog.csdn.net/reasonsummer/article/details/140578153 前期制作了女孩涂色延…...
Adobe“加速”创意人士开启设计新篇章
近日,Adobe公司宣布了其行业领先的专业设计应用程序——Adobe Illustrator和Adobe Photoshop的突破性创新。这一重大更新不仅为创意专业人士带来了前所未有的设计可能性和工作效率提升,还让不论是插画师、设计师还是摄影师,都能从中受益并创作…...
释疑 803-(1)概述 精炼提纯版
目录 习题 1-01计算机网络可以向用户提供哪些服务? 1-02 试简述分组交换的要点。 1-03 试从多个方面比较电路交换、报文交换和分组交换的主要优缺点。 1-05 互联网基础结构的发展大致分为哪几个阶段?请指出这几个阶段最主要的特点。 1-06 简述互联网标准制定的几个阶段…...
人工智能与机器学习原理精解【6】
文章目录 数值优化基础理论凹凸性定义在国外与国内存在不同国内定义国外定义总结示例与说明注意事项 国内凹凸性二阶定义的例子凹函数例子凸函数例子 凸函数(convex function)的开口方向凸函数的二阶导数凸函数的二阶定义单变量函数的二阶定义多变量函数…...
JDK、JRE、JVM之间的关系
JDK是Java的开发环境,用JDK开发了JAVA程序后,通过JDK中的编译程序(javac)将java文件编译成字节码文件,作为运行环境的JRE,字节码文件在JRE上运行,作为虚拟机的JVM解析这些字节码,映射…...
redis构建集群时,一直Waiting for the cluster to join
redis构建集群时,一直Waiting for the cluster to join 前置条件参考 前置条件 这是我搭建的集群相关信息,三台虚拟机,分别是一主一从。在将所有虚拟机中redis服务器用到的tcp端口都打开之后,进行构建集群。但是出现上面的情况。 …...
C++之类与对象(2)
前言 今天将步入学习类的默认成员函数,本节讲解其中的构造函数和析构函数。 1.类的默认成员函数 在 C 中,如果一个类没有显式定义某些成员函数,编译器会自动为该类生成默认的成员函数。以下是编译器可能会生成的默认成员函数: 默…...
「树形结构」基于 Antd 实现一个动态增加子节点+可拖拽的树
效果 如图所示 实现 import { createRoot } from react-dom/client; import React, { useState } from react; import { Tree, Input, Button } from antd; import { PlusOutlined } from ant-design/icons;const { TreeNode } Tree; const { Search } Input;const ini…...
ubuntu那些ppa源在哪
Ubuntu中的 PPA 终极指南 - UBUNTU粉丝之家 什么是PPA PPA 代表个人包存档。 PPA 允许应用程序开发人员和 Linux 用户创建自己的存储库来分发软件。 使用 PPA,您可以轻松获取较新的软件版本或官方 Ubuntu 存储库无法提供的软件。 为什么使用PPA? 正如…...
20240724-然后用idea创建一个Java项目/配置maven环境/本地仓储配置
1.创建一个java项目 (1)点击页面的create project,然后next (2)不勾选,继续next (3)选择新项目名称,新项目路径,然后Finsh,在新打开的页面选择…...
PaddleOCR-PP-OCRv4推理详解及部署实现(下)
目录 前言1. 检测模型1.1 预处理1.2 后处理1.3 推理 2. 方向分类器模型2.1 预处理2.2 后处理2.3 推理 3. 识别模型3.1 预处理3.2 后处理3.3 推理 4. PP-OCRv4部署4.1 源码下载4.2 环境配置4.2.1 配置CMakeLists.txt4.2.2 配置Makefile 4.3 ONNX导出4.4 engine生成4.4.1 检测模型…...
【Golang 面试基础题】每日 5 题(二)
✍个人博客:Pandaconda-CSDN博客 📣专栏地址:http://t.csdnimg.cn/UWz06 📚专栏简介:在这个专栏中,我将会分享 Golang 面试中常见的面试题给大家~ ❤️如果有收获的话,欢迎点赞👍收藏…...
状态模式与订单状态机的实现
状态模式 状态模式(State Design Pattern)是一种行为设计模式,用于在对象的内部状态改变时改变其行为。这种模式可以将状态的变化封装在状态对象中,使得对象在状态变化时不会影响到其他代码,提升了代码的灵活性和可维…...
【MSP430】MSP430是什么?与STM32对比哪个性能更佳?
一、MSP430是什么? MSP430F5529LP是一款由德州仪器(TI)推出的16位微控制器单元(MCU)开发板,具有USB功能,内存配置为128KB闪存和8KB RAM,工作频率高达25MHz。 这款MCU以其高性能和多…...
Win11 操作(四)g502鼠标连接电脑不亮灯无反应
罗技鼠标连接电脑不亮灯无反应 前言 罗技技术💩中💩,贴吧技术神中神! 最近买了一个g502,结果买回来直接插上电脑连灯都不亮,问了一下客服。客服简单的让我换接口,又是下载ghub之类的…...
大数据学习栈记——Neo4j的安装与使用
本文介绍图数据库Neofj的安装与使用,操作系统:Ubuntu24.04,Neofj版本:2025.04.0。 Apt安装 Neofj可以进行官网安装:Neo4j Deployment Center - Graph Database & Analytics 我这里安装是添加软件源的方法 最新版…...
视频字幕质量评估的大规模细粒度基准
大家读完觉得有帮助记得关注和点赞!!! 摘要 视频字幕在文本到视频生成任务中起着至关重要的作用,因为它们的质量直接影响所生成视频的语义连贯性和视觉保真度。尽管大型视觉-语言模型(VLMs)在字幕生成方面…...
【Web 进阶篇】优雅的接口设计:统一响应、全局异常处理与参数校验
系列回顾: 在上一篇中,我们成功地为应用集成了数据库,并使用 Spring Data JPA 实现了基本的 CRUD API。我们的应用现在能“记忆”数据了!但是,如果你仔细审视那些 API,会发现它们还很“粗糙”:有…...
(转)什么是DockerCompose?它有什么作用?
一、什么是DockerCompose? DockerCompose可以基于Compose文件帮我们快速的部署分布式应用,而无需手动一个个创建和运行容器。 Compose文件是一个文本文件,通过指令定义集群中的每个容器如何运行。 DockerCompose就是把DockerFile转换成指令去运行。 …...
聊一聊接口测试的意义有哪些?
目录 一、隔离性 & 早期测试 二、保障系统集成质量 三、验证业务逻辑的核心层 四、提升测试效率与覆盖度 五、系统稳定性的守护者 六、驱动团队协作与契约管理 七、性能与扩展性的前置评估 八、持续交付的核心支撑 接口测试的意义可以从四个维度展开,首…...
AI病理诊断七剑下天山,医疗未来触手可及
一、病理诊断困局:刀尖上的医学艺术 1.1 金标准背后的隐痛 病理诊断被誉为"诊断的诊断",医生需通过显微镜观察组织切片,在细胞迷宫中捕捉癌变信号。某省病理质控报告显示,基层医院误诊率达12%-15%,专家会诊…...
【从零学习JVM|第三篇】类的生命周期(高频面试题)
前言: 在Java编程中,类的生命周期是指类从被加载到内存中开始,到被卸载出内存为止的整个过程。了解类的生命周期对于理解Java程序的运行机制以及性能优化非常重要。本文会深入探寻类的生命周期,让读者对此有深刻印象。 目录 …...
Ubuntu系统复制(U盘-电脑硬盘)
所需环境 电脑自带硬盘:1块 (1T) U盘1:Ubuntu系统引导盘(用于“U盘2”复制到“电脑自带硬盘”) U盘2:Ubuntu系统盘(1T,用于被复制) !!!建议“电脑…...
深度剖析 DeepSeek 开源模型部署与应用:策略、权衡与未来走向
在人工智能技术呈指数级发展的当下,大模型已然成为推动各行业变革的核心驱动力。DeepSeek 开源模型以其卓越的性能和灵活的开源特性,吸引了众多企业与开发者的目光。如何高效且合理地部署与运用 DeepSeek 模型,成为释放其巨大潜力的关键所在&…...
保姆级【快数学会Android端“动画“】+ 实现补间动画和逐帧动画!!!
目录 补间动画 1.创建资源文件夹 2.设置文件夹类型 3.创建.xml文件 4.样式设计 5.动画设置 6.动画的实现 内容拓展 7.在原基础上继续添加.xml文件 8.xml代码编写 (1)rotate_anim (2)scale_anim (3)translate_anim 9.MainActivity.java代码汇总 10.效果展示 逐帧…...
