当前位置: 首页 > news >正文

Spark实时(四):Strctured Streaming简单应用

文章目录

Strctured Streaming简单应用

一、Output Modes输出模式

二、Streaming Table API

三、​​​​​​​​​​​​​​Triggers

1、​​​​​​​unspecified(默认模式)

2、​​​​​​​​​​​​​​Fixed interval micro-batches(固定间隔批次)

3、 ​​​​​​​​​​​​​​One-time micro-batch (仅一次触发)

4、​​​​​​​​​​​​​​Continuous with fixed checkpoint interval(连续处理)


Strctured Streaming简单应用

一、Output Modes输出模式

Structured Streaming中结果输出时outputMode可以设置三种模式,三种默认区别如下:

  • Append Mode(默认模式):追加模式,只有自上次触发后追加到结果表中的新行才会被输出。只有select、where、map、flatmap、filter、join查询支持追加模式。
  • Complete Mode(完整模式):将整个更新的结果输出。仅可用于代码中有聚合查询情况,代码中没有聚合查询不能使用。
  • Update Mode(更新模式):自Spark2.1.1版本后可用,只有自上次触发后更新的行才会被输出。这种模式仅仅输出自上次触发以来发生更改的行。如果结果数据没有聚合操作那么相当于Append Mode。

二、​​​​​​​​​​​​​​Streaming Table API

在Spark3.1版本之后,我们可以通过DataStreamReader.table()方式实时读取流式表中的数据,使用DataStreamWriter.toTable()向表中实时写数据。

案例:读取Socket数据实时写入到Spark流表中,然后读取流表数据展示数据。

代码示例如下:

package com.lanson.structuredStreamingimport org.apache.spark.sql.streaming.StreamingQuery
import org.apache.spark.sql.{DataFrame, SparkSession}object StreamTableAPI {def main(args: Array[String]): Unit = {//1.创建对象val spark: SparkSession = SparkSession.builder().master("local").appName("StreamTableAPI").config("spark.sql.shuffle.partitions", 1).config("spark.sql.warehouse.dir", "./my-spark-warehouse").getOrCreate()spark.sparkContext.setLogLevel("Error");import spark.implicits._//2.读取socket数据,注册流表val df: DataFrame = spark.readStream.format("socket").option("host", "node3").option("port", 9999).load()//3.对df进行转换val personinfo: DataFrame = df.as[String].map(line => {val arr: Array[String] = line.split(",")(arr(0).toInt, arr(1), arr(2).toInt)}).toDF("id", "name", "age")//4.将以上personinfo 写入到流表中personinfo.writeStream.option("checkpointLocation","./checkpoint/dir1").toTable("mytbl")import org.apache.spark.sql.functions._//5.读取mytbl 流表中的数据val query: StreamingQuery = spark.readStream.table("mytbl").withColumn("new_age", col("age").plus(6)).select("id", "name", "age", "new_age").writeStream.format("console").start()query.awaitTermination()}
}

以上代码编写完成后启动,向控制台输入以下数据:

1,zs,18
2,ls,19
3,ww,20
4,ml,21
5,tq,22

结果输入如下:

注意:以上代码执行时Spark中写出的表由Spark 参数”spark.sql.warehouse.dir”指定的路径临时维护数据,每次执行时,需要将该路径下的表数据清空。

三、​​​​​​​​​​​​​​Triggers

Structured Streaming Triggers 决定了流式数据被处理时是微批处理还是连续实时处理,以下是支持的Triggers:

实时处理,以下是支持的Triggers:

Trigger Type

描述

Unspecified(默认)

  • 代码使用:Trigger.ProcessingTime(0L)。
  • 代码中没有明确指定触发类型则查询默认以微批模式执行,表示尽可能快的执行查询。

Fixed interval micro-batches(固定间隔批次)

  • 代码使用:Trigger.ProcessingTime(long interval,TimeUnit timeUnit)
  • 查询将以微批模式处理,批次间隔根据用户指定的时间间隔决定
  1. 如果前一个微批处理时间在时间间隔内完成,则会等待间隔时间完成后再开始下一个微批处理
  2. 如果前一个微批处理时间超过了时间间隔,那么下一个微批处理将在前一个微批处理完成后立即开始。
  3. 如果没有新数据可用,则不会启动微批处理。

One-time micro-batch(仅一次性触发)

  • 代码使用:Trigger.Once()
  • 只执行一个微批次查询所有可用数据,然后自动停止,适用于一次性作业。

Continuous with fixed checkpoint interval(以固定checkpoint interval连续处理(实验阶段))

  • 代码使用:Trigger.Continuous(long interval,TimeUnit timeUnit)
  • 以固定的Checkpoint间隔(interval)连续处理。在这种模式下,连续处理引擎将每隔一定的间隔(interval)做一次checkpoint,可获得低至1ms的延迟。

下面以读取Socket数据为例,Scala代码演示各个模式

1、​​​​​​​unspecified(默认模式)

代码如下:

//3.默认微批模式执行查询,尽快将结果写出到控制台
val query: StreamingQuery = frame.writeStream.format("console").start()query.awaitTermination()

2、​​​​​​​​​​​​​​Fixed interval micro-batches(固定间隔批次)

代码如下:

//3.用户指定固定间隔批次触发查询val query: StreamingQuery = frame.writeStream.format("console").trigger(Trigger.ProcessingTime("5 seconds"))
//      .trigger(Trigger.ProcessingTime(5,TimeUnit.SECONDS).start()query.awaitTermination()

注意:这种固定间隔批次指的是第一批次处理完成,等待间隔时间,然后处理第二批次数据,依次类推。

3、 ​​​​​​​​​​​​​​One-time micro-batch (仅一次触发)

代码如下:

//4.仅一次触发执行
val query: StreamingQuery = frame.writeStream.format("console").trigger(Trigger.Once()).start()
query.awaitTermination()

4、​​​​​​​​​​​​​​Continuous with fixed checkpoint interval(连续处理)

Continuous不再是周期性启动task的批量执行数,而是启动长期运行的task,而是不断一个一个数据进行处理,周期性的通过指定checkpoint来记录状态(如果不指定checkpoint目录,会将状态记录在Temp目录下),保证exactly-once语义,这样就可以实现低延迟。详细内容可以参照后续“Continuous处理”章节。

代码如下:

//3.Continuous 连续触发执行
val query: StreamingQuery = frame.writeStream.format("console")//每10ms 记录一次状态,而不是执行一次.trigger(Trigger.Continuous(10,TimeUnit.MILLISECONDS)).option("checkpointLocation","./checkpint/dir4").start()
query.awaitTermination()

  • 📢博客主页:https://lansonli.blog.csdn.net
  • 📢欢迎点赞 👍 收藏 ⭐留言 📝 如有错误敬请指正!
  • 📢本文由 Lansonli 原创,首发于 CSDN博客🙉
  • 📢停下休息的时候不要忘了别人还在奔跑,希望大家抓紧时间学习,全力奔赴更美好的生活✨

相关文章:

Spark实时(四):Strctured Streaming简单应用

文章目录 Strctured Streaming简单应用 一、Output Modes输出模式 二、Streaming Table API 三、​​​​​​​​​​​​​​Triggers 1、​​​​​​​unspecified(默认模式) 2、​​​​​​​​​​​​​​Fixed interval micro-batches&am…...

SpringBoot上传超大文件导致OOM,完美问题解决办法

问题描述 报错: Caused by: java.lang.OutOfMemoryError at java.io.ByteArrayOutputStream.hugeCapacity(ByteArrayOutputStream.java:123) ~[?:1.8.0_381] at java.io.ByteArrayOutputStream.grow(ByteArrayOutputStream.java:117) ~[?:1.8.0_381] at java.…...

PyTorch 的各个核心模块和它们的功能

1. torch 核心功能 张量操作:PyTorch 的张量是一个多维数组,类似于 NumPy 的 ndarray,但支持 GPU 加速。数学运算:提供了各种数学运算,包括线性代数操作、随机数生成等。自动微分:torch.autograd 模块用于…...

Java开发之LinkedList源码分析

#来自ゾフィー(佐菲) 1 简介 LinkedList 的底层数据结构是双向链表。可以当作链表、栈、队列、双端队列来使用。有以下特点: 在插入或删除数据时,性能好;允许有 null 值;查询效率不高;线程不安…...

外卖霸王餐系统架构怎么选?

在当今日益繁荣的外卖市场中,外卖霸王餐作为一种独特的营销策略,受到了众多商家的青睐。然而,要想成功实施外卖霸王餐活动,一个安全、稳定且高效的架构选择至关重要。本文将深入探讨外卖霸王餐架构的选择,以期为商家提…...

AV1技术学习:Transform Coding

对预测残差进行变换编码,去除潜在的空间相关性。VP9 采用统一的变换块大小设计,编码块中的所有的块共享相同的变换大小。VP9 支持 4 4、8 8、16 16、32 32 四种正方形变换大小。根据预测模式选择由一维离散余弦变换 (DCT) 和非对称离散正弦变换 (ADS…...

Git操作指令

Git操作指令 一、安装git 1、设置配置信息: # global全局配置 git config --global user.name "Your username" git config --global user.email "Your email"2、查看git版本号 git -v # or git --version3、查看配置信息: git…...

CSS 创建:从入门到精通

CSS 创建:从入门到精通 CSS(层叠样式表)是网页设计中不可或缺的一部分,它用于控制网页的布局和样式。本文将详细介绍CSS的创建过程,包括基本概念、语法结构、选择器、样式属性以及如何将CSS应用到HTML中。无论您是初学者还是有经验的开发者,本文都将为您提供宝贵的信息。…...

Windows 11 系统对磁盘进行分区保姆级教程

Windows 11磁盘分区 磁盘分区是将硬盘驱动器划分为多个逻辑部分的过程,每个逻辑部分都可以独立使用和管理。在Windows 11操作系统中进行磁盘分区主要有以下几个作用和意义: 组织和管理数据:分区可以帮助用户更好地组织他们的数据&#xff0c…...

探索WebKit的CSS盒模型:深入理解Web布局的基石

探索WebKit的CSS盒模型:深入理解Web布局的基石 在Web开发的世界中,CSS盒模型(Box Model)是构建网页布局的核心原理。WebKit,作为Safari浏览器的渲染引擎,对CSS盒模型有着深入而精确的支持。本文将带你深入…...

c++初阶知识——string类详解

目录 前言: 1.标准库中的string类 1.1 auto和范围for auto 范围for 1.2 string类常用接口说明 1.string类对象的常见构造 1.3 string类对象的访问及遍历操作 1.4. string类对象的修改操作 1.5 string类非成员函数 2.string类的模拟实现 2.1 经典的string…...

php接口返回的json字符串,json_decode()失败,原来是多了红点

问题: 调用某个接口返回的json,json_decode()失败,返回数据为null, echo json_last_error();返回错误码 4 经过多次调试发现:多出来一个红点,预览是看不到的。 解决:要去除BOM头部 $resul…...

Python3网络爬虫开发实战(2)爬虫基础库

文章目录 一、urllib1. urlparse 实现 URL 的识别和分段2. urlunparse 用于构造 URL3. urljoin 用于两个链接的拼接4. urlencode 将 params 字典序列化为 params 字符串5. parse_qs 和 parse_qsl 用于将 params 字符串反序列化为 params 字典或列表6. quote 和 unquote 对 URL的…...

el-image预览图片点击遮盖处关闭预览

预览关闭按钮不明显 解决方式: 1.修改按钮样式明显点: //el-image 添加自定义类名,下文【test-image】代指 .test-image .el-icon-circle-close{ color:#fff; font-size:20px; ...改成很明显的样式 }2.使用事件监听,监听当前遮…...

基于Neo4j将知识图谱用于检索增强生成:Knowledge Graphs for RAG

Knowledge Graphs for RAG 本文是学习https://www.deeplearning.ai/short-courses/knowledge-graphs-rag/这门课的学习笔记。 What you’ll learn in this course Knowledge graphs are used in development to structure complex data relationships, drive intelligent sea…...

康康近期的慢SQL(oracle vs 达梦)

近期执行的sql,哪些比较慢? 或者健康检查时搂一眼状态 oracle: --最近3天内的慢sql set lines 200 pages 100 col txt for a65 col sql_id for a13 select a.sql_id,a.cnt,a.pctload,b.sql_text txt from (select * from (select sql_id,co…...

探索 GPT-4o mini:成本效益与创新的双重驱动

💝💝💝欢迎来到我的博客,很高兴能够在这里和您见面!希望您在这里可以感受到一份轻松愉快的氛围,不仅可以获得有趣的内容和知识,也可以畅所欲言、分享您的想法和见解。 推荐:kwan 的首页,持续学…...

2.6基本算法之动态规划2989:糖果

描述 由于在维护世界和平的事务中做出巨大贡献,Dzx被赠予糖果公司2010年5月23日当天无限量糖果免费优惠券。在这一天,Dzx可以从糖果公司的N件产品中任意选择若干件带回家享用。糖果公司的N件产品每件都包含数量不同的糖果。Dzx希望他选择的产品包含的糖…...

12.顶部带三角形的边框 CSS 关键字 currentColor

顶部带三角形的边框 创建一个在顶部带有三角形的内容容器。 使用 ::before 和 ::after 伪元素创建两个三角形。两个三角形的颜色应分别与容器的 border-color 和容器的 background-color 相同。一个三角形(::before)的 border-width 应比另一个(::after)宽 1px,以起到边框的作…...

Llama中模块参数大小

LLama2中,流程中数据大小的变换如下 Transformer模块 第一次输入,进行prefill,输入x维度为[1, 8, 4096] 1. 构建wq,wk,wv,wo,尺寸均为[4096,4096], 与x点乘,得到xq, xk, xv 2. 构建KV cache, 尺寸为 [b…...

7.4.分块查找

一.分块查找的算法思想: 1.实例: 以上述图片的顺序表为例, 该顺序表的数据元素从整体来看是乱序的,但如果把这些数据元素分成一块一块的小区间, 第一个区间[0,1]索引上的数据元素都是小于等于10的, 第二…...

Flask RESTful 示例

目录 1. 环境准备2. 安装依赖3. 修改main.py4. 运行应用5. API使用示例获取所有任务获取单个任务创建新任务更新任务删除任务 中文乱码问题: 下面创建一个简单的Flask RESTful API示例。首先,我们需要创建环境,安装必要的依赖,然后…...

智慧医疗能源事业线深度画像分析(上)

引言 医疗行业作为现代社会的关键基础设施,其能源消耗与环境影响正日益受到关注。随着全球"双碳"目标的推进和可持续发展理念的深入,智慧医疗能源事业线应运而生,致力于通过创新技术与管理方案,重构医疗领域的能源使用模式。这一事业线融合了能源管理、可持续发…...

java调用dll出现unsatisfiedLinkError以及JNA和JNI的区别

UnsatisfiedLinkError 在对接硬件设备中,我们会遇到使用 java 调用 dll文件 的情况,此时大概率出现UnsatisfiedLinkError链接错误,原因可能有如下几种 类名错误包名错误方法名参数错误使用 JNI 协议调用,结果 dll 未实现 JNI 协…...

STM32F4基本定时器使用和原理详解

STM32F4基本定时器使用和原理详解 前言如何确定定时器挂载在哪条时钟线上配置及使用方法参数配置PrescalerCounter ModeCounter Periodauto-reload preloadTrigger Event Selection 中断配置生成的代码及使用方法初始化代码基本定时器触发DCA或者ADC的代码讲解中断代码定时启动…...

vue3 字体颜色设置的多种方式

在Vue 3中设置字体颜色可以通过多种方式实现&#xff0c;这取决于你是想在组件内部直接设置&#xff0c;还是在CSS/SCSS/LESS等样式文件中定义。以下是几种常见的方法&#xff1a; 1. 内联样式 你可以直接在模板中使用style绑定来设置字体颜色。 <template><div :s…...

ServerTrust 并非唯一

NSURLAuthenticationMethodServerTrust 只是 authenticationMethod 的冰山一角 要理解 NSURLAuthenticationMethodServerTrust, 首先要明白它只是 authenticationMethod 的选项之一, 并非唯一 1 先厘清概念 点说明authenticationMethodURLAuthenticationChallenge.protectionS…...

vue3 定时器-定义全局方法 vue+ts

1.创建ts文件 路径&#xff1a;src/utils/timer.ts 完整代码&#xff1a; import { onUnmounted } from vuetype TimerCallback (...args: any[]) > voidexport function useGlobalTimer() {const timers: Map<number, NodeJS.Timeout> new Map()// 创建定时器con…...

GitHub 趋势日报 (2025年06月08日)

&#x1f4ca; 由 TrendForge 系统生成 | &#x1f310; https://trendforge.devlive.org/ &#x1f310; 本日报中的项目描述已自动翻译为中文 &#x1f4c8; 今日获星趋势图 今日获星趋势图 884 cognee 566 dify 414 HumanSystemOptimization 414 omni-tools 321 note-gen …...

OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别

OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别 直接训练提示词嵌入向量的核心区别 您提到的代码: prompt_embedding = initial_embedding.clone().requires_grad_(True) optimizer = torch.optim.Adam([prompt_embedding...