【深度学习】yolov8-seg分割训练,拼接图的分割复原
文章目录
- 项目背景
- 造数据
- 训练
项目背景
在日常开发中,经常会遇到一些图片是由多个图片拼接来的,如下图就是三个图片横向拼接来的。是否可以利用yolov8-seg模型来识别出这张图片的三张子图区域呢,这是文本要做的事情。
造数据
假设拼接方式有:横向拼接2张图为新图(最短边是高reisze到768,另一边等比resize)、横向拼接3张图为新图(最短边是高reisze到768,另一边等比resize)、纵向拼接2张图为新图(最短边是高reisze到768,另一边等比resize)、纵向拼接3张图为新图(最短边是高reisze到768,另一边等比resize)、拼接一个22的图(每张图大小resize到一样,总大小12901280)。
这个代码会造分割数据。
import os
import random
from PIL import Imagedef list_path_all_files(dirname):result = []for maindir, subdir, file_name_list in os.walk(dirname):for filename in file_name_list:if filename.lower().endswith('.jpg'):apath = os.path.join(maindir, filename)result.append(apath)return resultdef resize_image(image, target_size, resize_by='height'):w, h = image.sizeif resize_by == 'height':if h != target_size:ratio = target_size / hnew_width = int(w * ratio)image = image.resize((new_width, target_size), Image.ANTIALIAS)elif resize_by == 'width':if w != target_size:ratio = target_size / wnew_height = int(h * ratio)image = image.resize((target_size, new_height), Image.ANTIALIAS)return imagedef create_2x2_image(images):target_size = (640, 640)new_image = Image.new('RGB', (1280, 1280))coords = []for i, img in enumerate(images):img = img.resize(target_size, Image.ANTIALIAS)if i == 0:new_image.paste(img, (0, 0))coords.append((0, 0, 640, 0, 640, 640, 0, 640))elif i == 1:new_image.paste(img, (640, 0))coords.append((640, 0, 1280, 0, 1280, 640, 640, 640))elif i == 2:new_image.paste(img, (0, 640))coords.append((0, 640, 640, 640, 640, 1280, 0, 1280))elif i == 3:new_image.paste(img, (640, 640))coords.append((640, 640, 1280, 640, 1280, 1280, 640, 1280))return new_image, coordsdef concatenate_images(image_list, mode='horizontal', target_size=768):if mode == 'horizontal':resized_images = [resize_image(image, target_size, 'height') for image in image_list]total_width = sum(image.size[0] for image in resized_images)max_height = target_sizenew_image = Image.new('RGB', (total_width, max_height))x_offset = 0coords = []for image in resized_images:new_image.paste(image, (x_offset, 0))coords.append((x_offset, 0, x_offset + image.size[0], 0, x_offset + image.size[0], max_height, x_offset, max_height))x_offset += image.size[0]elif mode == 'vertical':resized_images = [resize_image(image, target_size, 'width') for image in image_list]total_height = sum(image.size[1] for image in resized_images)max_width = target_sizenew_image = Image.new('RGB', (max_width, total_height))y_offset = 0coords = []for image in resized_images:new_image.paste(image, (0, y_offset))coords.append((0, y_offset, max_width, y_offset, max_width, y_offset + image.size[1], 0, y_offset + image.size[1]))y_offset += image.size[1]return new_image, coordsdef generate_labels(coords, image_size):labels = []width, height = image_sizefor coord in coords:x1, y1, x2, y2, x3, y3, x4, y4 = coordx1 /= widthy1 /= heightx2 /= widthy2 /= heightx3 /= widthy3 /= heightx4 /= widthy4 /= heightlabels.append(f"0 {x1:.5f} {y1:.5f} {x2:.5f} {y2:.5f} {x3:.5f} {y3:.5f} {x4:.5f} {y4:.5f}")return labelsdef generate_dataset(image_folder, output_folder, label_folder, num_images):image_paths = list_path_all_files(image_folder)if not os.path.exists(output_folder):os.makedirs(output_folder)if not os.path.exists(label_folder):os.makedirs(label_folder)for i in range(num_images):random_choice = random.randint(1, 5)if random_choice == 1:selected_images = [Image.open(random.choice(image_paths)) for _ in range(2)]new_image, coords = concatenate_images(selected_images, mode='horizontal')elif random_choice == 2:selected_images = [Image.open(random.choice(image_paths)) for _ in range(3)]new_image, coords = concatenate_images(selected_images, mode='horizontal')elif random_choice == 3:selected_images = [Image.open(random.choice(image_paths)) for _ in range(2)]new_image, coords = concatenate_images(selected_images, mode='vertical')elif random_choice == 4:selected_images = [Image.open(random.choice(image_paths)) for _ in range(3)]new_image, coords = concatenate_images(selected_images, mode='vertical')elif random_choice == 5:selected_images = [Image.open(random.choice(image_paths)) for _ in range(4)]new_image, coords = create_2x2_image(selected_images)output_image_path = os.path.join(output_folder, f'composite_image_paper_{i + 1:06d}.jpg')new_image.save(output_image_path, 'JPEG')label_path = os.path.join(label_folder, f'composite_image_paper_{i + 1:06d}.txt')labels = generate_labels(coords, new_image.size)with open(label_path, 'w') as label_file:for label in labels:label_file.write(label + '\n')# 示例用法
image_folder = '/ssd/xiedong/datasets/multilabelsTask/multilabels_new/10025doc_textPaperShot/'
# image_folder = '/ssd/xiedong/datasets/multilabelsTask/multilabels_new/'
output_folder = '/ssd/xiedong/datasets/composite_images_yolov8seg/images'
label_folder = '/ssd/xiedong/datasets/composite_images_yolov8seg/labels'
num_images = 10000
generate_dataset(image_folder, output_folder, label_folder, num_images)
有的图片还是很有难度的,比如这张图,分界不明显,模型是否能搞定是个未知数。当然,我会认为模型可以在一定程度上识别语义或者排版,还是有几率可以识别对的。
训练
我想得到一个后续可以直接用的环境,我直接用docker搞个环境。搞的过程:
docker run -it --gpus all --net host --shm-size=8g -v /ssd/xiedong/yolov8segdir:/ssd/xiedong/yolov8segdir ultralytics/ultralytics:8.2.62 bash
docker tag ultralytics/ultralytics:8.2.62 kevinchina/deeplearning:ultralytics-8.2.62
docker push kevinchina/deeplearning:ultralytics-8.2.62
写一个数据集data.yaml:
cd /ssd/xiedong/yolov8segdir
vim data.yaml
path: /ssd/xiedong/yolov8segdir/composite_images_yolov8seg
train: images # train images (relative to 'path') 128 images
val: images # val images (relative to 'path') 128 images
test: # test images (optional)# Classes
names:0: paper
执行这个代码开始训练模型:
from ultralytics import YOLO# Load a model
model = YOLO("yolov8m-seg.pt") # load a pretrained model (recommended for training)# Train the model with 2 GPUs
results = model.train(data="data.yaml", epochs=50, imgsz=640, device=[1, 2, 3], batch=180)
代码会自动下载这个模型到本地,网络问题,也可能需要自己用wget下载到当前训练代码的执行目录。
https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8m-seg.pt
开始训练:
python -m torch.distributed.run --nproc_per_node 3 x03train.py
这样训练就可以了:
看起来任务是简单的:
相关文章:

【深度学习】yolov8-seg分割训练,拼接图的分割复原
文章目录 项目背景造数据训练 项目背景 在日常开发中,经常会遇到一些图片是由多个图片拼接来的,如下图就是三个图片横向拼接来的。是否可以利用yolov8-seg模型来识别出这张图片的三张子图区域呢,这是文本要做的事情。 造数据 假设拼接方式有…...

Python升级打怪—Django入门
目录 一、Django简介 二、安装Django 三、创建Dajngo项目 (一) 创建项目 (二) 项目结构介绍 (三) 运行项目 (四) 结果 一、Django简介 Django是一个高级Python web框架,鼓励快速开发和干净、实用的设计。由经验丰富的开发人员构建,它解决了web开…...
leetcode面试题17.最大子矩阵
sooooooo long没刷题了,汗颜 题目链接:leetcode面试题17 1.题目 给定一个正整数、负整数和 0 组成的 N M 矩阵,编写代码找出元素总和最大的子矩阵。 返回一个数组 [r1, c1, r2, c2],其中 r1, c1 分别代表子矩阵左上角的行号和…...

计算机网络:构建联结的基础
目录 1. 网络拓扑结构 1.1 星型拓扑 1.2 环型拓扑 1.3 总线型拓扑 1.4 网状拓扑 2. 传输介质 2.1 双绞线 2.2 同轴电缆 2.3 光纤 2.4 无线电波 3. 协议栈模型 3.1 OSI模型 3.2 TCP/IP模型 4. 网络设备 4.1 交换机 4.2 路由器 4.3 网关 4.4 防火墙 5. IP地址…...

node和npm安装;electron、 electron-builder安装
1、node和npm安装 参考: https://blog.csdn.net/sw150811426/article/details/137147783 下载: https://nodejs.org/dist/v20.15.1/ 安装: 点击下载msi直接运行安装 安装完直接cmd打开可以,默认安装就已经添加了环境变量&…...
操作系统概念(黑皮书)阅读笔记
操作系统概念(黑皮书)阅读笔记 进程和内存管理部分章节 导论: 操作系统类似于政府,其本身不能实现任何有用功能,而是提供一个方便其他程序执行有用工作的环境 个人理解:os是government的作用࿰…...

matlab gui下的tcp client客户端编程框架
GUI界面 函数外定义全局变量 %全局变量 global TcpClient; %matlab作为tcpip客户端 建立连接 在“连接”按钮的回调函数下添加以下代码: global TcpClient;%全局变量 TcpClient tcpip(‘192.168.1.10’, 7, ‘NetworkRole’,‘client’); %连接到服务器地址和端…...
Matplotlib : Python 的绘图库
Matplotlib 是一个 Python 的绘图库,广泛用于生成各种静态、动态、交互式的图表。它基于 NumPy,一个用于科学计算的 Python 库。Matplotlib 可以用于生成出版质量级别的图表,并且提供了丰富的定制选项,以适应不同用户的需求。以下…...

数据编织 VS 数据仓库 VS 数据湖
目录 1. 什么是数据编织?2. 数据编织的工作原理3. 代码示例4. 数据编织的优势5. 应用场景6. 数据编织 vs 数据仓库6.1 数据存储方式6.2 数据更新和实时性6.3 灵活性和可扩展性6.4 查询性能6.5 数据治理和一致性6.6 适用场景6.7 代码示例比较 7. 数据编织 vs 数据湖7.1 数据存储…...
CSS(十一)——CSS分组和嵌套,尺寸(Dimension)
CSS 分组 和 嵌套 选择器 分组选择器 举个例子,多个标签有同一个样式,就可以不一个一个分开写,使用分组选择器 比如: h1 {color:green; } h2 {color:green; } p {color:green; } 就可以写为: h1,h2,p {color…...

必备神器!三款优秀远程控制电脑软件推荐
嘿,各位职场小伙伴们,今儿个咱们来聊聊个挺实用又带点“科技范儿”的话题——电脑远程控制那点事儿。作为刚踏入职场不久的新人,我深刻体会到,在这信息爆炸的时代,掌握几招远程操作的技能,简直就是给自个儿…...
关于正运动学解机器人手臂算法
机器人正运动学是机器人学的一个分支,研究机器人的运动和位置之间的关系。它通过解析机器人的结构和关节参数,以及给定的关节角度,来计算机器人的末端执行器的位置和姿态。 机器人正运动学算法通常使用DH(Denavit-Hartenberg&…...

MySQL 约束 (constraint)
文章目录 约束(constraint)列级约束和表级约束给约束起名字(constraint)非空约束(no null)检查约束(check)唯一性约束 (unique)主键约束 (primary key)主键分类单一主键复合主键主键自增 (auto_increment) 外键约束外什…...

用python程序发送文件(python实例二十六)
目录 1.认识Python 2.环境与工具 2.1 python环境 2.2 Visual Studio Code编译 3.文件上传 3.1 代码构思 3.2 服务端代码 3.3 客户端代码 3.4 运行结果 4.总结 1.认识Python Python 是一个高层次的结合了解释性、编译性、互动性和面向对象的脚本语言。 Python 的设计具…...

最新源支付系统源码 V7版全开源 免授权 附搭建教程
本文来自:最新源支付系统源码 V7版全开源 免授权 附搭建教程 - 源码1688 简介: 最新源支付系统源码_V7版全开源_免授权_附详细搭建教程_站长亲测 YPay是专为个人站长打造的聚合免签系统,拥有卓越的性能和丰富的功能。它采用全新轻量化的界面…...

HTML:lang属性作用
lang作用 用法常见语言代码优点示例结构效果说明分析HTML 基础结构导航栏内容部分总结 扩展 用法 HTML 文档级别: 在 <html> 标签上使用 lang 属性,指定整个文档的语言。 <!DOCTYPE html> <html lang"en"> <head><meta charse…...
Android SurfaceFlinger——纹理的绘制流程(二十八)
在系统开机动画的播放流程中,会从给定的资源文件中加载纹理数据并初始化一个 OpenGL 纹理对象,这里我们就来解析软件模拟纹理的绘制流程。 一、纹理概述 在 Android 的 SurfaceFlinger 系统组件中,纹理(Texture)是一个核心概念,特别是在涉及到图形渲染和显示的过程中。 …...
深入解析Memcached:C#中的应用与实战案例
目录 Memcached简介Memcached的特点Memcached的工作原理Memcached的应用场景Memcached的安装和配置Memcached与C#的集成 引入依赖配置Memcached客户端C#代码示例 存储数据读取数据删除数据深入解析Memcached 数据存储和过期策略分布式架构性能优化实战案例 缓存数据库查询结果实…...
keyring 库
目录 安装 keyring 基本用法 1. 设置密码 2. 获取密码 3. 删除密码 4. 返回当前使用的默认密钥环 5. 列出所有密码 支持的后端 keyring 是一个 Python 库,用于将敏感信息(如密码)安全地存储在操作系统的密码管理器中。它支持多种平台…...

[css3] 如何设置边框颜色渐变
div {border: 4px solid;border-image: linear-gradient(to right, #8f41e9, #578aef) 1; }参考: 5种CSS实现渐变色边框(Gradient borders方法的汇总...

手游刚开服就被攻击怎么办?如何防御DDoS?
开服初期是手游最脆弱的阶段,极易成为DDoS攻击的目标。一旦遭遇攻击,可能导致服务器瘫痪、玩家流失,甚至造成巨大经济损失。本文为开发者提供一套简洁有效的应急与防御方案,帮助快速应对并构建长期防护体系。 一、遭遇攻击的紧急应…...
【根据当天日期输出明天的日期(需对闰年做判定)。】2022-5-15
缘由根据当天日期输出明天的日期(需对闰年做判定)。日期类型结构体如下: struct data{ int year; int month; int day;};-编程语言-CSDN问答 struct mdata{ int year; int month; int day; }mdata; int 天数(int year, int month) {switch (month){case 1: case 3:…...
<6>-MySQL表的增删查改
目录 一,create(创建表) 二,retrieve(查询表) 1,select列 2,where条件 三,update(更新表) 四,delete(删除表…...

论文浅尝 | 基于判别指令微调生成式大语言模型的知识图谱补全方法(ISWC2024)
笔记整理:刘治强,浙江大学硕士生,研究方向为知识图谱表示学习,大语言模型 论文链接:http://arxiv.org/abs/2407.16127 发表会议:ISWC 2024 1. 动机 传统的知识图谱补全(KGC)模型通过…...

【Java_EE】Spring MVC
目录 Spring Web MVC 编辑注解 RestController RequestMapping RequestParam RequestParam RequestBody PathVariable RequestPart 参数传递 注意事项 编辑参数重命名 RequestParam 编辑编辑传递集合 RequestParam 传递JSON数据 编辑RequestBody …...

自然语言处理——Transformer
自然语言处理——Transformer 自注意力机制多头注意力机制Transformer 虽然循环神经网络可以对具有序列特性的数据非常有效,它能挖掘数据中的时序信息以及语义信息,但是它有一个很大的缺陷——很难并行化。 我们可以考虑用CNN来替代RNN,但是…...
MySQL中【正则表达式】用法
MySQL 中正则表达式通过 REGEXP 或 RLIKE 操作符实现(两者等价),用于在 WHERE 子句中进行复杂的字符串模式匹配。以下是核心用法和示例: 一、基础语法 SELECT column_name FROM table_name WHERE column_name REGEXP pattern; …...
DeepSeek 技术赋能无人农场协同作业:用 AI 重构农田管理 “神经网”
目录 一、引言二、DeepSeek 技术大揭秘2.1 核心架构解析2.2 关键技术剖析 三、智能农业无人农场协同作业现状3.1 发展现状概述3.2 协同作业模式介绍 四、DeepSeek 的 “农场奇妙游”4.1 数据处理与分析4.2 作物生长监测与预测4.3 病虫害防治4.4 农机协同作业调度 五、实际案例大…...
今日学习:Spring线程池|并发修改异常|链路丢失|登录续期|VIP过期策略|数值类缓存
文章目录 优雅版线程池ThreadPoolTaskExecutor和ThreadPoolTaskExecutor的装饰器并发修改异常并发修改异常简介实现机制设计原因及意义 使用线程池造成的链路丢失问题线程池导致的链路丢失问题发生原因 常见解决方法更好的解决方法设计精妙之处 登录续期登录续期常见实现方式特…...

OPENCV形态学基础之二腐蚀
一.腐蚀的原理 (图1) 数学表达式:dst(x,y) erode(src(x,y)) min(x,y)src(xx,yy) 腐蚀也是图像形态学的基本功能之一,腐蚀跟膨胀属于反向操作,膨胀是把图像图像变大,而腐蚀就是把图像变小。腐蚀后的图像变小变暗淡。 腐蚀…...