2024年钉钉杯大数据竞赛A题超详细解题思路+python代码手把手保姆级运行讲解视频+问题一代码分享
初赛A:烟草营销案例数据分析
AB题综合难度不大,难度可以视作0.4个国赛,题量可以看作0.35个国赛题量。适合于国赛前队伍练手,队伍内磨合。竞赛获奖率50%,八月底出成绩,参赛人数3000队左右。本文将为大家进行A题的超详细解题思路+部分代码分享
钉钉杯赛中分享资料(问题一代码+论文+思路)链接(18点更新)
链接:https://pan.baidu.com/s/16o5y5Gxu2NDa9mGxshbnvw
提取码:sxjm
对于数据类型的题目,首先就是应该进行数据预处理,这里由于每一问题都涉及不同的数据集,因此对于该问题的数据预处理。我们应该分问进行,下面主要对问题一涉及的数据进行详细的说明,后面仅作展示处理。
- 数据预处理数据清洗-缺失值异常值处理
-
对于题目中,存在明显的极大值以及极小值。例如2013 12这个数据当月销量只有0.4箱子该数据与其他正常数据差异过大,应进行必要的数据处理。例如,应该将该异常值使用箱型图等方面进行判定,对于判定结果进行剔除处理。对于剔除后产生的空缺值使用插值的方法进行填充。

例如,我们以A1 A2为例,首先将进行正态分布的判定,对于正态分布的数据使用3西格玛原则判定异常值,对于非正态分布的数据使用箱型图判定异常值。将判定结果替换为缺失值,进行插值填充。

进行判定,得出A1的数据均不服从正态分布,A2的数据服从正太分布。因此,需要对不同的数据进行不同的处理。
数据可视
绘制时间序列图,观察数据趋势、周期性和季节性。

数据显示,销售金额在2013年和2014年出现了明显的高峰。之后的几年中,销售金额总体呈现下降趋势,直到2018年后趋于平稳。从2011年到2017年,销售金额的长期趋势呈下降态势。2017年以后,趋势有所回升,并逐渐趋于平稳。数据显示,每年某些月份的销售金额显著增加,表现出较强的季节性波动。这个季节性模式在各年间基本保持一致。残差部分显示出较大的波动性,但没有明显的系统性趋势。这些波动反映了数据中随机和不可预测的部分。【论文内容:图形文字描述】
问题一二都涉及到了选择两种不同的数学预测模型,这里我们将常见的预测模型放于文章最后,供大家参考使用。理论上所有的模型都是正确的、都是可以使用的。在数学建模是没有答案的,因此也没有对错,仅仅只有使用的适配度和精度问题。所以文末的各种模型都是可以使用的
1. 预测A1、A2品牌的销量
对未来销量进行预测:使用历史销售数据构建2个不同类型的时间序列预测模型,分别对 A1、A2香烟品牌的未来销量进行数据预测,目标为表中最后空白项。自行选择和设计模型类型 、参数、结构。
对于问题一预测模型的选择多种多样只要符合预测条件即可,这里给出其中两种的步骤
模型选择:
1. ARIMA(AutoRegressive Integrated Moving Average)模型:
- 参数选择:使用AIC/BIC准则选择最优的p, d, q参数。
- 模型训练:拟合ARIMA模型,并进行预测。
- 结果评价:使用RMSE、MAE等评价指标衡量模型性能。
2. Prophet模型:
- 数据处理: 转换数据格式以适应Prophet模型。
- 模型训练: 拟合Prophet模型,并进行预测。
- 结果评价: 使用RMSE、MAE等评价指标衡量模型性能。
| 模型名称 | 描述 | 优点 | 缺点 |
| ARIMA | 结合自回归和移动平均,适用于非平稳时间序列数据 | 适用于平稳和非平稳数据;参数选择较灵活 | 需要手动选择参数;对数据要求较高 |
| SARIMA | 在ARIMA基础上增加季节性部分,适用于季节性时间序列数据 | 能够捕捉季节性变化;适用于周期性波动的数据 | 参数较多,选择复杂;计算复杂度高 |
| Prophet | 由Facebook开发,适用于具有多种季节性和假期效应的时间序列数据 | 易于使用;对异常值和缺失值鲁棒 | 适用于较长时间序列数据;短期预测效果较差 |
| LSTM | 基于神经网络,能够捕捉长时间序列依赖关系,适用于复杂的非线性数据 | 能够捕捉长期依赖关系;适用于复杂非线性数据 | 需要大量数据训练;训练时间长,计算资源高 |
| Exponential Smoothing | 通过对历史数据加权平均来预测未来值,包括单、双和霍尔特-温特斯季节性模型 | 简单易用;计算速度快 | 对复杂数据预测效果较差;不能捕捉长 |
2. 预测A3、A4品牌的销售金额
对销售金额进行预测:使用历史销售数据构建2个不同类型的时间序列预测模型,分别对 A3、A4香烟品牌的销售金额进行数据预测,目标为表中最后空白项。自行选择和设计模型类型 、参数、结构。
模型选择:
1. SARIMA(Seasonal ARIMA)模型:
- 参数选择: 使用AIC/BIC准则选择最优的p, d, q, P, D, Q, m参数。
- 模型训练: 拟合SARIMA模型,并进行预测。
- 结果评价: 使用RMSE、MAE等评价指标衡量模型性能。
2. LSTM(Long Short-Term Memory)模型:
- 数据处理: 标准化数据,创建适合LSTM模型的输入格式。
- 模型构建: 构建并训练LSTM神经网络模型。
- 结果评价: 使用RMSE、MAE等评价指标衡量模型性能。

3. 集成学习模型构建
集成学习:在上述分别对销量及销售金额预测模型的基础上,构建集成学习模型,实现 对A5香烟品牌的销量和销售金额的联合预测。集成学习模型不局限于上述问题中建立的模型, 可新增,以最终性能为评判标准。
目标: 对A5品牌的销量和销售金额进行联合预测。
步骤:
1、ARIMA模型选择和训练:
遍历 p、d 和 q 参数的所有可能组合(从0到2),选择AIC值最小的参数组合。
使用最佳参数组合训练ARIMA模型,并进行10步预测。
2、Prophet模型训练和预测:
将数据转换为Prophet模型所需的格式(列名分别为 ds 和 y)。使用Prophet模型进行10步预测。
3、构建集成学习模型(Stacking):
将ARIMA和Prophet模型的预测结果作为特征,实际值作为目标变量,使用线性回归模型作为元学习器进行训练。使用训练好的线性回归模型生成最终的集成学习预测结果。
4、评价模型:
计算集成学习模型的均方误差(MSE)和平均绝对误差(MAE)。
对比ARIMA模型和Prophet模型的MSE和MAE,评估各模型的性能。
绘制实际值、ARIMA预测值、Prophet预测值和集成学习预测值的时间序列图。
BZD数模社 独家制作

相关文章:
2024年钉钉杯大数据竞赛A题超详细解题思路+python代码手把手保姆级运行讲解视频+问题一代码分享
初赛A:烟草营销案例数据分析 AB题综合难度不大,难度可以视作0.4个国赛,题量可以看作0.35个国赛题量。适合于国赛前队伍练手,队伍内磨合。竞赛获奖率50%,八月底出成绩,参赛人数3000队左右。本文将为大家进行…...
unity2D游戏开发01项目搭建
1新建项目 选择2d模板,设置项目名称和存储位置 在Hierarchy面板右击,create Empty 添加组件 在Project视图中右键新建文件夹 将图片资源拖进来(图片资源在我的下载里面) 点击Player 修改属性,修好如下 点击Sprite Editor 选择第二…...
删除的视频怎样才能恢复?详尽指南
在日常生活中,我们有时会不小心删除一些重要的视频文件,或者在整理存储空间时不慎丢失了珍贵的记忆片段。这时候,我们可以通过一些数据恢复工具和技巧,找回这些被删除的视频。本文将详细介绍几种常见且有效的视频恢复方法…...
LeetCode160 相交链表
前言 题目: 160. 相交链表 文档: 代码随想录——链表相交 编程语言: C 解题状态: 没思路… 思路 依旧是双指针法,很巧妙的方法,有点想不出来。 代码 先将两个链表末端对齐,然后两个指针齐头并…...
高性能响应式UI部件DevExtreme v24.1.4全新发布
DevExtreme拥有高性能的HTML5 / JavaScript小部件集合,使您可以利用现代Web开发堆栈(包括React,Angular,ASP.NET Core,jQuery,Knockout等)构建交互式的Web应用程序。从Angular和Reac,…...
Python实现Java mybatis-plus 产生的SQL自动化测试SQL速度和判断SQL是否走索引
Python实现Java mybatis-plus 产生的SQL自动化测试SQL速度和判断SQL是否走索引 文件目录如下 │ sql_speed_test.py │ ├─input │ data-report_in_visit_20240704.log │ resource_in_sso_20240704.log │ └─outputdata-report_in_visit_20240704.cs…...
UDP的报文结构及其注意事项
1. 概述 UDP(User Datagram Protocol)是一种无连接的传输层协议,它提供了一种简单的数据传输服务,不保证数据的可靠传输。在网络通信中,UDP通常用于一些对实时性要求较高、数据量较小、传输延迟较低的应用,…...
MySQL深度分页问题深度解析与解决方案
文章目录 引言深度分页问题的原因解决方案方案一:使用主键索引优化方案二:使用子查询优化方案三:使用INNER JOIN优化方案四:使用搜索引擎 最佳实践结论 引言 在处理包含数百万条记录的大型数据表时,使用MySQL的LIMIT进…...
C#类型基础Part1-值类型与引用类型
C#类型基础Part1-值类型与引用类型 参考资料前言值类型引用类型装箱和拆箱 参考资料 《.NET之美–.NET关键技术深入与解析》 前言 C#中的类型一共分为两类,一类是值类型(Value Type),一类是引用类型(Reference Type)…...
被上市公司预判的EPS增速分析
EPS增速对二级市场投资和估值有着很显著的影响,上市公司显然也知道这一点。对于想要做市值管理的上市公司来说,调节EPS增速比调节EPS更加有效。因此《穿透财报:读懂财报中的逻辑与陷阱》中的作者在第四章正式提出了二级市场财务分析中的额动态…...
快速入门了解Ajax
博客主页:音符犹如代码系列专栏:JavaWeb关注博主,后期持续更新系列文章如果有错误感谢请大家批评指出,及时修改感谢大家点赞👍收藏⭐评论✍ Ajax的初识 意义:AJAX(Asynchronous JavaScript and…...
FPGA开发——呼吸灯的设计
一、原理 呼吸灯的原理主要基于PWM(脉冲宽度调制)技术,通过控制LED灯的占空比来实现亮度的逐渐变化。这种技术通过调整PWM信号的占空比,即高电平在一个周期内所占的比例,来控制LED灯的亮度。当占空比从0%逐渐变化到1…...
【数据结构】二叉树链式结构——感受递归的暴力美学
前言: 在上篇文章【数据结构】二叉树——顺序结构——堆及其实现中,实现了二叉树的顺序结构,使用堆来实现了二叉树这样一个数据结构;现在就来实现而二叉树的链式结构。 一、链式结构 链式结构,使用链表来表示一颗二叉树…...
开始尝试从0写一个项目--后端(三)
器材管理 和员工管理基本一致,就不赘述,展示代码为主 新增器材 表设计: 字段名 数据类型 说明 备注 id bigint 主键 自增 name varchar(32) 器材名字 img varchar(255) 图片 number BIGINT 器材数量 comment VARC…...
2024年7月解决Docker拉取镜像失败的实用方案,亲测有效
在Ubuntu 16.04、Debian 8、CentOS 7系统中,若遇到Docker拉取镜像失败的问题,以下是一些亲测有效的解决方案: 配置加速地址 首先,创建Docker配置目录:sudo mkdir -p /etc/docker然后,编辑daemon.json文件…...
基于内容的音乐推荐网站/基于ssm的音乐推荐系统/基于协同过滤推荐的音乐网站/基于vue的音乐平台
获取源码联系方式请查看文末🍅 摘 要 随着信息化时代的到来,系统管理都趋向于智能化、系统化,音乐推荐网站也不例外,但目前国内的有些公司仍然都使用人工管理,公司规模越来越大,同时信息量也越来越庞大&…...
STM32智能工业监控系统教程
目录 引言环境准备智能工业监控系统基础代码实现:实现智能工业监控系统 4.1 数据采集模块 4.2 数据处理与控制模块 4.3 通信与网络系统实现 4.4 用户界面与数据可视化应用场景:工业监控与优化问题解决方案与优化收尾与总结 1. 引言 智能工业监控系统通…...
WEB渗透Web突破篇-SQL注入(MYSQL)
注释符 # -- 注意这里有个空格 /* hello */ /*! hello */ /*!32302 10*/ MYSQL version 3.23.02联合查询 得到列数 order by或group by 不断增加数字,直到得到报错响应 1 ORDER BY 1-- #True 1 ORDER BY 2-- #True 1 ORDER BY 3-- #True 1 ORDER BY 4-- #Fal…...
PDF解锁网站
https://smallpdf.com/cn/unlock-pdfhttps://smallpdf.com/cn/unlock-pdfhttps://www.freemypdf.comhttps://www.freemypdf.com...
【Redis】主从复制分析-基础
1 主从节点运行数据的存储 在主从复制中, 对于主节点, 从节点就是自身的一个客户端, 所以和普通的客户端一样, 会被组织为一个 client 的结构体。 typedef struct client {// 省略 } client;同时无论是从节点, 还是主节点, 在运行中的数据都存放在一个 redisServer 的结构体中…...
golang循环变量捕获问题
在 Go 语言中,当在循环中启动协程(goroutine)时,如果在协程闭包中直接引用循环变量,可能会遇到一个常见的陷阱 - 循环变量捕获问题。让我详细解释一下: 问题背景 看这个代码片段: fo…...
macOS多出来了:Google云端硬盘、YouTube、表格、幻灯片、Gmail、Google文档等应用
文章目录 问题现象问题原因解决办法 问题现象 macOS启动台(Launchpad)多出来了:Google云端硬盘、YouTube、表格、幻灯片、Gmail、Google文档等应用。 问题原因 很明显,都是Google家的办公全家桶。这些应用并不是通过独立安装的…...
基于Docker Compose部署Java微服务项目
一. 创建根项目 根项目(父项目)主要用于依赖管理 一些需要注意的点: 打包方式需要为 pom<modules>里需要注册子模块不要引入maven的打包插件,否则打包时会出问题 <?xml version"1.0" encoding"UTF-8…...
反射获取方法和属性
Java反射获取方法 在Java中,反射(Reflection)是一种强大的机制,允许程序在运行时访问和操作类的内部属性和方法。通过反射,可以动态地创建对象、调用方法、改变属性值,这在很多Java框架中如Spring和Hiberna…...
Robots.txt 文件
什么是robots.txt? robots.txt 是一个位于网站根目录下的文本文件(如:https://example.com/robots.txt),它用于指导网络爬虫(如搜索引擎的蜘蛛程序)如何抓取该网站的内容。这个文件遵循 Robots…...
代理篇12|深入理解 Vite中的Proxy接口代理配置
在前端开发中,常常会遇到 跨域请求接口 的情况。为了解决这个问题,Vite 和 Webpack 都提供了 proxy 代理功能,用于将本地开发请求转发到后端服务器。 什么是代理(proxy)? 代理是在开发过程中,前端项目通过开发服务器,将指定的请求“转发”到真实的后端服务器,从而绕…...
ip子接口配置及删除
配置永久生效的子接口,2个IP 都可以登录你这一台服务器。重启不失效。 永久的 [应用] vi /etc/sysconfig/network-scripts/ifcfg-eth0修改文件内内容 TYPE"Ethernet" BOOTPROTO"none" NAME"eth0" DEVICE"eth0" ONBOOT&q…...
深入浅出深度学习基础:从感知机到全连接神经网络的核心原理与应用
文章目录 前言一、感知机 (Perceptron)1.1 基础介绍1.1.1 感知机是什么?1.1.2 感知机的工作原理 1.2 感知机的简单应用:基本逻辑门1.2.1 逻辑与 (Logic AND)1.2.2 逻辑或 (Logic OR)1.2.3 逻辑与非 (Logic NAND) 1.3 感知机的实现1.3.1 简单实现 (基于阈…...
【JVM】Java虚拟机(二)——垃圾回收
目录 一、如何判断对象可以回收 (一)引用计数法 (二)可达性分析算法 二、垃圾回收算法 (一)标记清除 (二)标记整理 (三)复制 (四ÿ…...
iview框架主题色的应用
1.下载 less要使用3.0.0以下的版本 npm install less2.7.3 npm install less-loader4.0.52./src/config/theme.js文件 module.exports {yellow: {theme-color: #FDCE04},blue: {theme-color: #547CE7} }在sass中使用theme配置的颜色主题,无需引入,直接可…...
