6.乳腺癌良性恶性预测(二分类、逻辑回归、PCA降维、SVD奇异值分解)
乳腺癌良性恶性预测
- 1. 特征工程
- 1.1 特征筛选
- 1.2 特征降维 PCA
- 1.3 SVD奇异值分解
- 2. 代码
- 2.1 逻辑回归、二分类问题
- 2.2 特征降维 PCA
- 2.3 SVD奇异值分解
1. 特征工程
- 专业上:30个人特征来自于临床一线专家,每个特征和都有医学内涵;
- 数据上:30个中可能有一些是冗余的。
1.1 特征筛选
- 从30个选出重要的,踢掉不重要的。
- 从数据的角度来讲,不建议进行特征筛选,做特征筛选可能只是为了解释性,给领导看看而已。因为再不重要的特征都有信息,筛选掉必然导致信息的丢失。
- 线性回归的系数代表该项特征的重要性,系数就代表权重。
- 使用协方差或皮尔逊系数判断两列特征的相关性。
1.2 特征降维 PCA
- 把原来30个特征中的核心信息中抽取出来,融合到新生成的几个特征中,新的特征不是原来的任何一个!
- PCA(Principal Component Analysis,主成分分析)
1.3 SVD奇异值分解
- SVD(奇异值分解)是一种在信号处理、统计学、机器学习等领域广泛应用的矩阵分解方法。
- 它可以将一个矩阵分解为三个特定的矩阵的乘积,这三个矩阵分别是:一个正交矩阵、一个对角矩阵(其元素为奇异值,且按从大到小排列)以及另一个正交矩阵的转置。
2. 代码
2.1 逻辑回归、二分类问题
y = F ( X ) = s i g m o i d ( x 0 w 0 + x 1 w 1 + x 2 w 2 + . . . + x 12 w 12 ) y=F(X)=sigmoid(x_0w_0+x_1w_1+x_2w_2+...+x_{12}w_{12}) y=F(X)=sigmoid(x0w0+x1w1+x2w2+...+x12w12)
from sklearn.datasets import load_breast_cancer
X,y=load_breast_cancer(return_X_y=True)
print(X.shape,y.shape) #:(569, 30) (569,)from sklearn.model_selection import train_test_split
X_train,X_test,y_train,y_test = train_test_split(X,y)
# 逻辑回归,实际是二分类,就是线性回归加了一个激活函数 sigmoid
from sklearn.linear_model import LogisticRegression
lr=LogisticRegression(max_iter=10000)
lr.fit(X_train,y_train)
pred=lr.predict(X_test)
acc=(pred==y_test).mean()
print(acc)
2.2 特征降维 PCA
# 特征降维 PCA(主成分分析)
from sklearn.decomposition import PCA
pca = PCA(n_components=20)
pca.fit(X_train)
X_train1 = pca.transform(X_train)
# 原始数据
lr = LogisticRegression(max_iter=10000)
lr.fit(X_train,y_train)
(lr.predict(X_test)==y_test).mean() #:0.965034965034965
# 10个特征
lr1 = LogisticRegression(max_iter=10000)
# 特征降维
# 1. 构建
pca=PCA(n_components=10)
# 2. 拟合
pca.fit(X_train)
# 3. 转换
X_train1 = pca.transform(X_train)
X_test1 = pca.transform(X_test)lr1.fit(X_train1,y_train)
(lr1.predict(X_test1)==y_test).mean() #:0.958041958041958
2.3 SVD奇异值分解
import numpy as np
from matplotlib import pyplot as plt
beauty = plt.imread(fname="beauty.jpg")
# [Height, Width, Channel]
print(beauty.shape) #:(627, 481, 3)
r=beauty[:,:,0]
plt.imshow(r,cmap='gray')

U, S, V = np.linalg.svd(a=r, full_matrices=False)
print(U.shape,S.shape, V.shape) #: (627, 481) (481,) (481, 481)
plt.plot(S)

"""降维之后的效果
"""
K = 20
restore = U[:,:K] @ np.diag(S[:K]) @ V[:K, :]
plt.imshow(X=restore, cmap="gray")

相关文章:
6.乳腺癌良性恶性预测(二分类、逻辑回归、PCA降维、SVD奇异值分解)
乳腺癌良性恶性预测 1. 特征工程1.1 特征筛选1.2 特征降维 PCA1.3 SVD奇异值分解 2. 代码2.1 逻辑回归、二分类问题2.2 特征降维 PCA2.3 SVD奇异值分解 1. 特征工程 专业上:30个人特征来自于临床一线专家,每个特征和都有医学内涵;数据上&…...
Vue3响应式高阶用法之markRaw()
Vue3响应式高阶用法之markRaw() 文章目录 Vue3响应式高阶用法之markRaw()一、简介二、使用场景2.1 避免性能开销2.2 防止意外修改 三、基本使用3.1 标记对象 四、功能详解4.1 markRaw与reactive的区别4.2 markRaw与ref的区别 五、最佳实践及案例5.1 使用大型第三方库对象5.2 静…...
免费SSL证书的安全性与获取指南
SSL证书是一种数字凭证,用于加密用户与网站之间的信息交换,以确保传输的数据不被第三方窃取。它像是一个数字版的密封印章,为数据的传输过程提供了一层保护膜。 免费的SSL证书通常由CA机构提供,它们同样可以提供基础数据的加密服…...
【CN】Argo 持续集成和交付(一)
1.简介 Argo 英 [ˈɑ:ɡəu] 美 [ˈɑrˌɡo] Kubernetes 原生工具,用于运行工作流程、管理集群以及正确执行 GitOps。 Argo 于 2020 年 3 月 26 日被 CNCF 接受为孵化成熟度级别,然后于 2022 年 12 月 6 日转移到毕业成熟度级别。 argoproj.github.i…...
Unity3D 自定义Debug双击溯源问题详解
前言 在Unity3D的开发过程中,经常需要处理各种交互和事件,其中双击事件是常见的需求之一。然而,由于Unity自带的双击检测机制并不完善,开发者往往需要自定义实现以满足特定需求。本文将详细介绍如何在Unity3D中自定义Debug双击溯…...
环境搭建-Docker搭建ClickHouse
Docker搭建ClickHouse 一、前言二、ClickHouse安装2.1 拉取镜像运行ClickHouse服务 三、测试安装3.1 进入clickhouse容器3.2 命令补充说明 四、测试连接五、设置CK的用户名密码 一、前言 本文使用的Docker使用Windows搭建,Linux版本的搭建方式一样。 Windows系统搭…...
深入理解CSS中的变量(概念篇)
CSS变量,也称为自定义属性,是一种在CSS中定义和重用值的方式。它们允许开发者在一个地方定义样式值,然后在整个样式表中引用这些值,从而提高代码的可维护性和可读性。 1、定义和使用CSS变量 CSS变量的定义和使用非常简单。变量名以两个连字符开头,变量值为任何有效的CSS…...
Prometheus 监控Tomcat等java应用的状态
5月应用服务出现问题,当别的小伙伴问我,有没有Tomcat等应用状态的监控的时候,我有点儿尴尬。所以赶紧抽空部署一下。 在配置之前,就当已经会安装jdk和tomcat了。 一、下载jmx_exporter #linux下 cd /usr/local/prometheus wget …...
c++中的斐波那契数列(Fibonacci Sequence)和背包问题(Knapsack Problem)
前言 hello,大家好啊,我是文宇,不是文字,是文宇哦。 斐波那契数列(Fibonacci Sequence) 斐波那契数列(Fibonacci Sequence)是一个经典的数学问题,其中每个数都是前两个…...
connect的非阻塞模式
本文参考:connect 函数在阻塞和非阻塞模式下的行为 一般情况下,在使用connect连接服务端时,需要等待一会儿才会函数才会返回,导致程序阻塞。为了降低阻塞的影响,我们可能会单独开个线程处理connect请求,例…...
jenkins面试题全集
1. 简述什么是Jenkins ? Jenkins是一个开源的持续集成的服务器,Jenkins开源帮助我们自动构建各类项目。 Jenkins强大的插件式,使得Jenkins可以集成很多软件,可以帮助我们持续集成我们的工程项目,对于我们测试来说&…...
Python中最好学和最实用的有哪些库和框架
Python拥有丰富的库和框架,这些库和框架覆盖了从数据处理、科学计算、Web开发到机器学习等多个领域。以下是一些值得学习的Python库和框架: 数据处理与科学计算 NumPy 描述:NumPy是Python中用于科学计算的一个库,它提供了一个强…...
文件解析的终极工具:Apache Tika
文件解析的终极工具:Apache Tika Apache Tika 简介 Apache Tika 是一个开源的、跨平台的库,用于检测、提取和解析各种类型文件的元数据。 它支持多种文件格式,包括文档、图片、音频和视频。 Tika是一个底层库,经常用于搜索引擎…...
Hadoop 重要监控指标
某安卓逆向课程打包下载(92节课) https://pan.quark.cn/s/53cec8b8055a 某PC逆向课程(100节课打包下载) https://pan.quark.cn/s/e38f2b24f36c Hadoop 是一个开源的分布式存储和计算框架,广泛应用…...
oracle 查询锁表
oracle 查询锁表 SELECT o.object_name, s.sid, s.serial#, p.spid, s.username, s.program FROM v l o c k e d o b j e c t l J O I N d b a o b j e c t s o O N l . o b j e c t i d o . o b j e c t i d J O I N v locked_object l JOIN dba_objects o ON l.object_id …...
进程概念(三)----- fork 初识
目录 前言1. pid && ppid2. forka. 为什么 fork 要给子进程返回 0, 给父进程返回子进程的 pid ?b. 一个函数是如何做到两次的?c. fork 函数在干什么?d. 一个变量怎么做到拥有不同的内容的?e. 拓展:…...
huawei 路由 RIP 协议中三种定时器的工作原理
RFC2453 定义的三种 RIP 协议定时器 更新定时器(Update Timer):用于触发更新报文的发送,超时时间为 30 秒。老化定时器(Age Timer):如果在老化时间内没有收到邻居发送的响应报文,则…...
HTML常见标签——超链接a标签
一、a标签简介 二、a标签属性 href属性 target属性 三、a标签的作用 利用a标签进行页面跳转 利用a标签返回页面顶部以及跳转页面指定区域 利用a标签实现文件下载 一、a标签简介 <a>标签用于做跳转、导航,是双标签,记作<a></a>&#…...
Python 爬虫入门(一):从零开始学爬虫 「详细介绍」
Python 爬虫入门(一):从零开始学爬虫 「详细介绍」 前言1.爬虫概念1.1 什么是爬虫?1.2 爬虫的工作原理 2. HTTP 简述2.1 什么是 HTTP?2.2 HTTP 请求2.3 HTTP 响应2.4 常见的 HTTP 方法 3. 网页的组成3.1 HTML3.2 CSS3.…...
Linux嵌入式学习——数据结构——概念和Seqlist
数据结构 相互之间存在一种或多种特定关系的数据元素的集合。 逻辑结构 集合,所有数据在同一个集合中,关系平等。 线性,数据和数据之间是一对一的关系。数组就是线性表的一种。 树, 一对多 图,多对多 …...
golang循环变量捕获问题
在 Go 语言中,当在循环中启动协程(goroutine)时,如果在协程闭包中直接引用循环变量,可能会遇到一个常见的陷阱 - 循环变量捕获问题。让我详细解释一下: 问题背景 看这个代码片段: fo…...
相机Camera日志实例分析之二:相机Camx【专业模式开启直方图拍照】单帧流程日志详解
【关注我,后续持续新增专题博文,谢谢!!!】 上一篇我们讲了: 这一篇我们开始讲: 目录 一、场景操作步骤 二、日志基础关键字分级如下 三、场景日志如下: 一、场景操作步骤 操作步…...
【Linux】C语言执行shell指令
在C语言中执行Shell指令 在C语言中,有几种方法可以执行Shell指令: 1. 使用system()函数 这是最简单的方法,包含在stdlib.h头文件中: #include <stdlib.h>int main() {system("ls -l"); // 执行ls -l命令retu…...
微信小程序 - 手机震动
一、界面 <button type"primary" bindtap"shortVibrate">短震动</button> <button type"primary" bindtap"longVibrate">长震动</button> 二、js逻辑代码 注:文档 https://developers.weixin.qq…...
提升移动端网页调试效率:WebDebugX 与常见工具组合实践
在日常移动端开发中,网页调试始终是一个高频但又极具挑战的环节。尤其在面对 iOS 与 Android 的混合技术栈、各种设备差异化行为时,开发者迫切需要一套高效、可靠且跨平台的调试方案。过去,我们或多或少使用过 Chrome DevTools、Remote Debug…...
Vue 模板语句的数据来源
🧩 Vue 模板语句的数据来源:全方位解析 Vue 模板(<template> 部分)中的表达式、指令绑定(如 v-bind, v-on)和插值({{ }})都在一个特定的作用域内求值。这个作用域由当前 组件…...
Android写一个捕获全局异常的工具类
项目开发和实际运行过程中难免会遇到异常发生,系统提供了一个可以捕获全局异常的工具Uncaughtexceptionhandler,它是Thread的子类(就是package java.lang;里线程的Thread)。本文将利用它将设备信息、报错信息以及错误的发生时间都…...
jdbc查询mysql数据库时,出现id顺序错误的情况
我在repository中的查询语句如下所示,即传入一个List<intager>的数据,返回这些id的问题列表。但是由于数据库查询时ID列表的顺序与预期不一致,会导致返回的id是从小到大排列的,但我不希望这样。 Query("SELECT NEW com…...
书籍“之“字形打印矩阵(8)0609
题目 给定一个矩阵matrix,按照"之"字形的方式打印这个矩阵,例如: 1 2 3 4 5 6 7 8 9 10 11 12 ”之“字形打印的结果为:1,…...
规则与人性的天平——由高考迟到事件引发的思考
当那位身着校服的考生在考场关闭1分钟后狂奔而至,他涨红的脸上写满绝望。铁门内秒针划过的弧度,成为改变人生的残酷抛物线。家长声嘶力竭的哀求与考务人员机械的"这是规定",构成当代中国教育最尖锐的隐喻。 一、刚性规则的必要性 …...
