当前位置: 首页 > news >正文

map、foreach、filter这些方法你还不知道什么时候该用哪个吗?那就看过来

  1. forEach:‌主要用于遍历数组并对每个元素执行某种操作,‌通常用于改变当前数组里的值。‌它不会返回新数组,‌而是直接在原数组上进行操作。‌forEach方法不支持return、‌break、‌continue等语句,‌因为这些语句在forEach中不会按预期工作,‌return会返回undefined。‌因此,‌forEach更适合用于对数组进行遍历并修改原数组的情况。‌

  2. map:‌创建一个新数组,‌其结果是该数组中的每个元素调用一个提供的函数后的返回值组成。‌map方法会返回一个新数组,‌这个新数组由原数组中的每个元素调用一次提供的函数后的返回值组成。‌map方法中的回调函数需要使用return来指定新数组中的值,‌因此它更适合于根据当前数组映射一个新的数组的情况。‌

  3. filter:‌创建一个新数组,‌新数组中的元素是通过检查指定数组中符合条件的所有元素。‌filter方法用于筛选出符合特定条件的元素,‌并返回一个新数组。‌filter方法中的回调函数应返回true或false来决定是否将当前元素包含在新数组中。‌因此,‌filter适合于过滤当前数组并找出符合条件的元素,‌返回一个新的数组,‌而不会改变原数组。‌

相关文章:

map、foreach、filter这些方法你还不知道什么时候该用哪个吗?那就看过来

forEach:‌主要用于遍历数组并对每个元素执行某种操作,‌通常用于改变当前数组里的值。‌它不会返回新数组,‌而是直接在原数组上进行操作。‌forEach方法不支持return、‌break、‌continue等语句,‌因为这些语句在forEach中不会…...

6.3 面向对象技术-设计模式

设计模式 创建型模式 结构型模式...

Mac 中安装内网穿透工具ngrok

ngrok 是什么? Ngrok 是一个网络工具,主要用于在网络中创建从公共互联网到私有或本地网络中运行的web服务的安全隧道。它充当了一个反向代理,允许外部用户通过公共可访问的URL访问位于防火墙或私有网络中的web应用程序或服务。Ngrok 特别适用…...

python count返回什么

描述 count() 方法用于统计字符串中某个子字符串出现的次数,可选参数为开始搜索与结束搜索的位置索引。 语法 count() 方法语法: S.count(sub[,start0[,endlen(S)]]) 参数 sub -- 搜索的子字符串。 S -- 父字符串。 start -- 可选参数,…...

mac清理软件哪个好用免费 MacBook电脑清理软件推荐 怎么清理mac

随着使用时间的增长,mac电脑会积累一些不必要的垃圾文件,这些文件会占用宝贵的存储空间,影响电脑的运行速度和稳定性。因此,定期清理mac电脑的垃圾文件是非常有必要的。市场上有许多优秀的Mac清理软件,包括一些出色的国…...

学生党百元蓝牙耳机哪个性价比高?精选四款超强性价比耳机型号

现阶段,蓝牙耳机技术逐渐成熟,蓝牙耳机在我们的学习和娱乐中承担着很重要的角色,那么在面对众多品牌和型号中,学生党们在选择蓝牙耳机上纠结不已,到底学生党百元蓝牙耳机哪个性价比高?作为一个蓝牙耳机重度…...

中文之美,美在辞藻富丽,也美在情感含蓄内敛。

文章目录 引言句句不提幸福,句句都是幸福句句不提释怀,句句都是释怀句句不提爱意,句句都是爱意句句不提安慰,句句都是安慰句句不提遗憾,句句都是遗憾句句不提思念,句句都是思念引言 许多句子没有将主题直抒胸臆,却通过字词间的呼应、碰撞,让人感受到“言未表而意无穷”…...

FPGA与ASIC:深入解析芯片设计的双子星

前言 在半导体世界里,FPGA(Field-Programmable Gate Array,现场可编程门阵列)与ASIC(Application-Specific Integrated Circuit,专用集成电路)是两种截然不同的芯片设计策略,各自在…...

深入 Symfony 服务容器:依赖注入的艺术

“深入 Symfony 服务容器:依赖注入的艺术” 是一个涵盖了 Symfony 服务容器核心概念和依赖注入机制的复杂话题。为了全面理解 Symfony 服务容器的运作,我们将详细探讨以下几个方面: 服务容器的概念和作用依赖注入的基本原理Symfony 服务容器…...

基于Java+SpringMvc+Vue技术的慈善捐赠平台设计与实现(源码+LW+部署讲解)

项目含有源码、文档、PPT、配套开发软件、软件安装教程、项目发布教程、包运行成功以及课程答疑! 软件开发环境及开发工具: 操作系统:Windows 10、Windows 7、Windows 8 开发语言:java 前端技术:JavaScript、VUE.j…...

dsp c6657 SYS/BIOS学习笔记

1 SYS/BIOS简介 SYS/BIOS是一种用于TI的DSP平台的嵌入式操作系统(RTOS)。 2 任务 2.1 任务调度 SYS/BIOS任务线程有0-31个优先级(默认0-15,优先级0被空闲线程使用,任务最低优先级为1,最高优先级为15&am…...

分布式搜索引擎ES-DSL搜索详解

1.DSL搜索-入门语法 建立索引: xxx(自定义名称) 自定义mapping: POST /shop/_mapping {"properties": {"id": {"type": "long"},"age": {"type": "integer"},"username": {&quo…...

vue zip文件下载请求封装与使用

axios封装(重点是响应拦截) 这里把响应超时时间注释是文件下载接口返回需要较长时间 import axios from axios import {ElMessageBox} from "element-plus"; import router from "/router";const service axios.create({baseURL: …...

Windows波形音频MMEAPI简介

Windows波形音频MMEAPI简介 使用MMEAPI时需要导入头文件&#xff1a;#include<mmeapi.h> mmeapi.h文件的主要内容 mmeapi.h 文件是 Windows 多媒体 API 的一部分&#xff0c;主要用于处理波形音频&#xff08;Waveform Audio&#xff09;的输入和输出。以下是该文件的…...

sklearn聚类算法用于图片压缩与图片颜色直方图分类

上期文章:机器学习之SKlearn(scikit-learn)的K-means聚类算法 我们分享了sklearn的基本知识与基本的聚类算法,这里主要是机器学习的算法思想,前期文章我们也分享过人工智能的深度学习,二者有如何区别,可以先参考如下几个实例来看看机器学习是如何操作的 不同K值下的聚…...

Llama 3.1要来啦?!测试性能战胜GPT-4o

哎呀&#xff0c;Meta声称将于今晚发布的Llama 3.1&#xff0c;数小时前就在Hugging Face上泄露出来了&#xff1f;泄露的人很有可能是Meta员工&#xff1f; 还是先来看泄露出来的llama3.1吧。新的Llama 3.1模型包括8B、70B、405B三个版本。 而经过网友测试&#xff0c;该base…...

C++使用opencv处理图像阴影部分

1. 直方图均衡化 直方图均衡化是一种增强图像对比度的方法&#xff0c;可以通过均衡化图像的灰度级分布来改善图像中阴影部分的亮度。 #include <opencv2/opencv.hpp>using namespace cv;int main() {// 读取图像Mat image imread("input_image.jpg", IMREA…...

4.Java Web开发模式(javaBean+servlet+MVC)

Java Web开发模式 一、Java Web开发模式 1.javaBean简介 JavaBeans是Java中一种特殊的类&#xff0c;可以将多个对象封装到一个对象&#xff08;bean&#xff09;中。特点是可序列化&#xff0c;提供无参构造器&#xff0c;提供getter方法和setter方法访问对象的属性。名称中…...

centos7 mysql 基本测试(6)主从简单测试

centos7 xtrabackup mysql 基本测试&#xff08;6&#xff09;主从简单测试 mysql -u etc -p 1234aA~1 参考&#xff1a; centos7 时区设置 时间同步 https://blog.csdn.net/wowocpp/article/details/135931129 Mysql数据库&#xff1a;主从复制与读写分离 https://blog.csd…...

信息安全工程师题

防火墙安全策略有两种类型&#xff1a;白名单策略、黑名单策略白名单策略&#xff1a;只允许符合安全规则的包通过防火墙&#xff0c;其他通信包禁止黑名单策略&#xff1a;禁止与安全规则相冲突的包通过防火墙&#xff0c;其他通信包允许实现网络地址转换的方式主要有静态NAT、…...

Cesium1.95中高性能加载1500个点

一、基本方式&#xff1a; 图标使用.png比.svg性能要好 <template><div id"cesiumContainer"></div><div class"toolbar"><button id"resetButton">重新生成点</button><span id"countDisplay&qu…...

rnn判断string中第一次出现a的下标

# coding:utf8 import torch import torch.nn as nn import numpy as np import random import json""" 基于pytorch的网络编写 实现一个RNN网络完成多分类任务 判断字符 a 第一次出现在字符串中的位置 """class TorchModel(nn.Module):def __in…...

重启Eureka集群中的节点,对已经注册的服务有什么影响

先看答案&#xff0c;如果正确地操作&#xff0c;重启Eureka集群中的节点&#xff0c;对已经注册的服务影响非常小&#xff0c;甚至可以做到无感知。 但如果操作不当&#xff0c;可能会引发短暂的服务发现问题。 下面我们从Eureka的核心工作原理来详细分析这个问题。 Eureka的…...

【笔记】WSL 中 Rust 安装与测试完整记录

#工作记录 WSL 中 Rust 安装与测试完整记录 1. 运行环境 系统&#xff1a;Ubuntu 24.04 LTS (WSL2)架构&#xff1a;x86_64 (GNU/Linux)Rust 版本&#xff1a;rustc 1.87.0 (2025-05-09)Cargo 版本&#xff1a;cargo 1.87.0 (2025-05-06) 2. 安装 Rust 2.1 使用 Rust 官方安…...

【无标题】路径问题的革命性重构:基于二维拓扑收缩色动力学模型的零点隧穿理论

路径问题的革命性重构&#xff1a;基于二维拓扑收缩色动力学模型的零点隧穿理论 一、传统路径模型的根本缺陷 在经典正方形路径问题中&#xff08;图1&#xff09;&#xff1a; mermaid graph LR A((A)) --- B((B)) B --- C((C)) C --- D((D)) D --- A A -.- C[无直接路径] B -…...

深度学习水论文:mamba+图像增强

&#x1f9c0;当前视觉领域对高效长序列建模需求激增&#xff0c;对Mamba图像增强这方向的研究自然也逐渐火热。原因在于其高效长程建模&#xff0c;以及动态计算优势&#xff0c;在图像质量提升和细节恢复方面有难以替代的作用。 &#x1f9c0;因此短时间内&#xff0c;就有不…...

scikit-learn机器学习

# 同时添加如下代码, 这样每次环境(kernel)启动的时候只要运行下方代码即可: # Also add the following code, # so that every time the environment (kernel) starts, # just run the following code: import sys sys.path.append(/home/aistudio/external-libraries)机…...

基于PHP的连锁酒店管理系统

有需要请加文章底部Q哦 可远程调试 基于PHP的连锁酒店管理系统 一 介绍 连锁酒店管理系统基于原生PHP开发&#xff0c;数据库mysql&#xff0c;前端bootstrap。系统角色分为用户和管理员。 技术栈 phpmysqlbootstrapphpstudyvscode 二 功能 用户 1 注册/登录/注销 2 个人中…...

STM32---外部32.768K晶振(LSE)无法起振问题

晶振是否起振主要就检查两个1、晶振与MCU是否兼容&#xff1b;2、晶振的负载电容是否匹配 目录 一、判断晶振与MCU是否兼容 二、判断负载电容是否匹配 1. 晶振负载电容&#xff08;CL&#xff09;与匹配电容&#xff08;CL1、CL2&#xff09;的关系 2. 如何选择 CL1 和 CL…...

Web后端基础(基础知识)

BS架构&#xff1a;Browser/Server&#xff0c;浏览器/服务器架构模式。客户端只需要浏览器&#xff0c;应用程序的逻辑和数据都存储在服务端。 优点&#xff1a;维护方便缺点&#xff1a;体验一般 CS架构&#xff1a;Client/Server&#xff0c;客户端/服务器架构模式。需要单独…...