反转链表 - 力扣(LeetCode)C语言
206. 反转链表 - 力扣(LeetCode)( 点击前面链接即可查看题目)
/*** Definition for singly-linked list.* struct ListNode {* int val;* struct ListNode *next;* };*/
struct ListNode* reverseList(struct ListNode* head)
{if(head == NULL)return NULL;else{struct ListNode* oldhead = head;struct ListNode* newhead = NULL;while(oldhead){struct ListNode* nextnode = oldhead->next;oldhead->next = newhead;newhead = oldhead;//迭代oldhead = nextnode;}return newhead;}}
相关文章:
反转链表 - 力扣(LeetCode)C语言
206. 反转链表 - 力扣(LeetCode)( 点击前面链接即可查看题目) /*** Definition for singly-linked list.* struct ListNode {* int val;* struct ListNode *next;* };*/ struct ListNode* reverseList(struct ListNode* head) {if(head NULL)…...
【Linux】进程间通信(1):进程通信概念与匿名管道
人与人之间是如何通信的?举个简单的例子,假如我是月老,我要为素不相识的但又渴望爱情的男女两方牵红线。我需要收集男方的信息告诉女方,收集女方的信息告诉男方,然后由男女双方来决定是否继续。对于他们而言࿰…...
Spring从入门到精通 01
文章目录 1. 依赖注入 (Dependency Injection, DI)2. 面向切面编程 (Aspect-Oriented Programming, AOP)3. 事务管理4. 简化 JDBC 开发5. 集成各种框架和技术6. 模块化和扩展性:主要的 Spring 模块:Core Container:AOP 模块:Data …...
C语言经典习题25
冒泡排序 对一维数组进行升序排序,然后在数组中输入20个数,将排序后的结果打印输出。 #include<stdio.h> #define N 20 int main() {int a[N];int i;for(i0;i<N;i) //初始化数组的数 {scanf("%d",&a);}for(i0;…...
2-47 基于matlab的时域有限差分法(FDTD法)拉夫等效原理进行时谐场外推
基于matlab的时域有限差分法(FDTD法)拉夫等效原理进行时谐场外推。外推边界距离吸收边界的距离、电磁场循环、傅立叶变换提起幅值和相位、各远区剖分点电场、方向系数计算等操作,得出可视化结果。程序已调通,可直接运行。 2-47 时域有限差分法(FDTD法) 拉…...
JupyterNotebook快捷键 自用
COMMAND MODE —————————————————————————————— Up Down cells的上下选择 A B 在上/下方插入cell C V X 复制/粘贴/剪切cell 双击D 删除所选cell Z 恢复被删除的cell 双击I Interrupt中断内核 Shift Enter 运行cell并选择下方 EDIT MODE ———…...
【我的OpenGL学习进阶之旅】讲一讲GL_TEXTURE_2D和GL_TEXTURE_EXTERNAL_OES的区别
在使用OpenGL ES进行图形图像开发时,我们常使用GL_TEXTURE_2D纹理类型,它提供了对标准2D图像的处理能力。这种纹理类型适用于大多数场景,可以用于展示静态贴图、渲染2D图形和进行图像处理等操作。 另外,有时我们需要从Camera或外部视频源读取数据帧并进行处理。这时,我们…...
Makefile 如何将生成的 .o 文件放到指定文件夹
研究了不少文章,我行通了一个,但是也不全,目前只能适用当前文件夹,如果源文件有子文件夹处理不了,还得继续研究。很多人说编译完把O文件移动走或者直接删掉。我想说的是不符合我的要求,移走或者删除O文件&a…...
聊一聊知识图谱结合RAG
因为最近在做一些关于提高公司内部使用的聊天机器人的回答准确率,并且最近微软官方也是开源了一下graphrag的源码,所以想聊一聊这个知识图谱结合rag。 rag在利用私有数据增强大模型回答的领域是一种比较典型的技术,也就是我们提出问题的时候&…...
Java面试锦集 之 一、Java基础(1)
一、Java基础(1) 1.final 关键字的作用? 修饰变量: 一旦被赋值,就不能再被修改,保证了变量值的稳定性。 例: final int NUMBER 10; //之后就不能再改变 NUMBER 的值了。修饰方法:…...
【leetcode】排列序列
给出集合 [1,2,3,...,n],其所有元素共有 n! 种排列。 按大小顺序列出所有排列情况,并一一标记,当 n 3 时, 所有排列如下: "123""132""213""231""312""321" 给定…...
【Cesium开发实战】视频融合功能的实现,可自定义位置和视频路径
Cesium有很多很强大的功能,可以在地球上实现很多炫酷的3D效果。今天给大家分享一个视频融合功能。 1.话不多说,先展示 视频融合 2.设计思路 点击绘制开始在地图上绘制视频融合的点位,形成视频播放的区域,双击弹框输入名称和要播放视频的路径,即可对应区域播放对应视频,…...
【秋招笔试题】小明的美食
解析:思维题。由于需要互不相同,每次操作取重复的值与最大值相加即可,这样即可保证相加后不会新增重复的值。因此统计重复值即可。 #include <iostream> #include <algorithm>using namespace std; const int maxn 1e5 5; int…...
基于OpenLCA、GREET、R语言的生命周期评价方法、模型构建及典型案例应用
生命周期分析 (Life Cycle Analysis, LCA) 是评价一个产品系统生命周期整个阶段——从原材料的提取和加工,到产品生产、包装、市场营销、使用、再使用和产品维护,直至再循环和最终废物处置——的环境影响的工具。这种方法被认为是一种“从摇篮到坟墓”的…...
Linux操作系统 -socket网络通信
同一台主机之间的进程 1.古老的通信方式 无名管道 有名管道 信号 2、IPC对象通信 system v 消息队列 共享内存 信号量集 由于不同主机间进程通信 3.socket网络通信 国际网络体系结构: 七层OSI模型(理论…...
【苍穹】完美解决由于nginx更换端口号导致无法使用Websocket
一、报错信息 进行到websocket开发的过程中,遇到了前端报错,无法连接的提示: 经过F12排查很明显是服务端和客户端并没有连接成功。这里就涉及到之前的坑,现在需要填上了。 二、报错原因和推导 应该还记得刚开苍穹的第一天配置前…...
Qt中在pro中实现一些宏定义
在pro文件中利用 DEFINES 定义一些宏定义供工程整体使用。(和在cpp/h文件文件中定义使用有点类似)可以利用pro的中的宏定义实现一些全局的判断 pro中实现 #自定义一个变量 DEFINES "PI\"3.1415926\"" #自定义宏 DEFINES "T…...
bash XXX.sh文件和直接运行XXX.sh的区别
区别: bash XXX.sh 明确说明使用bash作为脚本的解释器不需要文件有执行权限 XXX.sh 需要指定相关解释器。如果第一行是#!/bin/bash则使用bash,如果是#!/bin/sh,则使用sh作为解释器需要有执行权限:通过chmod x 文件名指定 注意: #!是特殊标…...
【Python机器学习】k-近邻算法简单实践——改进约会网站的配对效果
需求背景: XX一直使用约会网站寻找适合自己的约会对象,ta会把人分为3种类型: 不喜欢、魅力一般、非常有魅力 对人分类轴,发现了对象样本的以下3种特征: 1、每年获得的飞行里程数 2、玩视频游戏所耗时间百分比 3、…...
vue3前端开发-小兔鲜项目-登录组件的开发表单验证
vue3前端开发-小兔鲜项目-登录组件的开发表单验证!现在开始写登录页面的内容。首先这一次完成基础的首页按钮点击跳转,以及初始化一些简单的表单的输入验证。后期还会继续完善内容。 1:首先还是准备好login页面的组件代码内容。 <script …...
高等数学(下)题型笔记(八)空间解析几何与向量代数
目录 0 前言 1 向量的点乘 1.1 基本公式 1.2 例题 2 向量的叉乘 2.1 基础知识 2.2 例题 3 空间平面方程 3.1 基础知识 3.2 例题 4 空间直线方程 4.1 基础知识 4.2 例题 5 旋转曲面及其方程 5.1 基础知识 5.2 例题 6 空间曲面的法线与切平面 6.1 基础知识 6.2…...
现代密码学 | 椭圆曲线密码学—附py代码
Elliptic Curve Cryptography 椭圆曲线密码学(ECC)是一种基于有限域上椭圆曲线数学特性的公钥加密技术。其核心原理涉及椭圆曲线的代数性质、离散对数问题以及有限域上的运算。 椭圆曲线密码学是多种数字签名算法的基础,例如椭圆曲线数字签…...
智能分布式爬虫的数据处理流水线优化:基于深度强化学习的数据质量控制
在数字化浪潮席卷全球的今天,数据已成为企业和研究机构的核心资产。智能分布式爬虫作为高效的数据采集工具,在大规模数据获取中发挥着关键作用。然而,传统的数据处理流水线在面对复杂多变的网络环境和海量异构数据时,常出现数据质…...
【Java学习笔记】BigInteger 和 BigDecimal 类
BigInteger 和 BigDecimal 类 二者共有的常见方法 方法功能add加subtract减multiply乘divide除 注意点:传参类型必须是类对象 一、BigInteger 1. 作用:适合保存比较大的整型数 2. 使用说明 创建BigInteger对象 传入字符串 3. 代码示例 import j…...
#Uniapp篇:chrome调试unapp适配
chrome调试设备----使用Android模拟机开发调试移动端页面 Chrome://inspect/#devices MuMu模拟器Edge浏览器:Android原生APP嵌入的H5页面元素定位 chrome://inspect/#devices uniapp单位适配 根路径下 postcss.config.js 需要装这些插件 “postcss”: “^8.5.…...
网站指纹识别
网站指纹识别 网站的最基本组成:服务器(操作系统)、中间件(web容器)、脚本语言、数据厍 为什么要了解这些?举个例子:发现了一个文件读取漏洞,我们需要读/etc/passwd,如…...
Git常用命令完全指南:从入门到精通
Git常用命令完全指南:从入门到精通 一、基础配置命令 1. 用户信息配置 # 设置全局用户名 git config --global user.name "你的名字"# 设置全局邮箱 git config --global user.email "你的邮箱example.com"# 查看所有配置 git config --list…...
「全栈技术解析」推客小程序系统开发:从架构设计到裂变增长的完整解决方案
在移动互联网营销竞争白热化的当下,推客小程序系统凭借其裂变传播、精准营销等特性,成为企业抢占市场的利器。本文将深度解析推客小程序系统开发的核心技术与实现路径,助力开发者打造具有市场竞争力的营销工具。 一、系统核心功能架构&…...
职坐标物联网全栈开发全流程解析
物联网全栈开发涵盖从物理设备到上层应用的完整技术链路,其核心流程可归纳为四大模块:感知层数据采集、网络层协议交互、平台层资源管理及应用层功能实现。每个模块的技术选型与实现方式直接影响系统性能与扩展性,例如传感器选型需平衡精度与…...
基于小程序老人监护管理系统源码数据库文档
摘 要 近年来,随着我国人口老龄化问题日益严重,独居和居住养老机构的的老年人数量越来越多。而随着老年人数量的逐步增长,随之而来的是日益突出的老年人问题,尤其是老年人的健康问题,尤其是老年人产生健康问题后&…...
