C/C++编程-算法学习-数字滤波器
数字滤波器
- 一阶低通滤波器
- 结论
- 推导1
- 1. 基本公式推导
- 2. 截止频率 和 采样频率 推导
- 实现
- 二阶低通滤波器
- 实现1
- 实现2
一阶低通滤波器
结论
其基本原理基于以下公式:
o u t p u t [ n ] = α ∗ i n p u t [ n ] + ( 1 − α ) ∗ o u t p u t [ n − 1 ] output[n] = α * input[n] + (1 - α) * output[n - 1] output[n]=α∗input[n]+(1−α)∗output[n−1]
- output[n] 是当前的输出值
- input[n] 是当前的输入值
- α是滤波系数,取值范围在 0 到 1 之间。α值越大,对输入的响应越迅速,但滤波效果相对较弱;α值越小,滤波效果越强,但对输入的响应越慢
- output[n - 1] 是上一次的输出值
例如,如果 alpha = 0.1,输入值在短时间内快速变化,由于 (1 - alpha) 的权重较大,上一次的输出值对当前输出值的影响较大,从而起到平滑和抑制高频变化的作用。
推导1
1. 基本公式推导
对应电路模型一阶RC滤波器
Y ( s ) / X ( s ) = H ( s ) = 1 r c s + 1 = 1 r ⋅ j w c + 1 = 1 τ s + 1 Y(s)/X(s)=H(s) = \frac{1}{rcs +1} = \frac{1}{r·jwc + 1} =\frac{1}{\tau s + 1} Y(s)/X(s)=H(s)=rcs+11=r⋅jwc+11=τs+11
在自控中称为一阶惯性环节
转成时域方程
X ( s ) = Y ( s ) / H ( s ) = Y ( s ) ( τ s + 1 ) X(s) = Y(s)/H(s) = Y(s)(\tau s +1) X(s)=Y(s)/H(s)=Y(s)(τs+1)
x ( t ) = τ y ′ ( t ) + y ( t ) x(t) = \tau y'(t) + y(t) x(t)=τy′(t)+y(t)
将导数拆开(使用一阶后向差分法,对上面微分方程进行离散化)
x ( t ) = τ ( y ( t ) − y ( t − T ) T ) + y ( t ) x(t) = \tau (\frac {y(t) - y(t-T)}{T}) + y(t) x(t)=τ(Ty(t)−y(t−T))+y(t)
整理成可递归迭代函数
y ( t ) = ( 1 − T T + τ ) ⋅ y ( t − T ) + T T + τ x ( t ) y(t) = (1-\frac {T}{T+\tau})·y(t-T) + \frac{T}{T+\tau}x(t) y(t)=(1−T+τT)⋅y(t−T)+T+τTx(t)
令 a = T T + τ a = \frac{T}{T+\tau} a=T+τT 则可得一般表达式
y ( t ) = ( 1 − a ) y ( t − T ) + a x ( t ) y(t) = (1-a)y(t-T)+ax(t) y(t)=(1−a)y(t−T)+ax(t)
2. 截止频率 和 采样频率 推导
实现
#include <stdio.h>
#include <stdlib.h>// 一阶低通滤波器函数
float lowPassFilter(float input, float prevOutput, float alpha) {return alpha * input + (1 - alpha) * prevOutput;
}int main() {float input = 10.0; // 输入值float prevOutput = 5.0; // 上一次的输出值float alpha = 0.2; // 滤波系数for(int i=0; i<20; i++){float output = lowPassFilter(input, prevOutput, alpha);prevOutput = output;printf("filter current result: %f\n", output);}system("pause");return 0;
}
运行结果
二阶低通滤波器
实现1
#include <stdio.h>
// #include </lib/gcc/x86_64-linux-gnu/9/math.h>
#include <math.h>// 二阶低通滤波器参数
#define SAMPLING_FREQ 1000 // 采样频率
#define CUTOFF_FREQ 100 // 截止频率// 计算滤波器系数
void calculateFilterCoefficients(double *a, double *b) {double omega = 2 * M_PI * CUTOFF_FREQ / SAMPLING_FREQ;double alpha = sin(omega) / (2 * 0.707);double beta = cos(omega);double a0 = 1 + alpha;double a1 = -2 * beta;double a2 = 1 - alpha;double b0 = (1 - beta) / 2;double b1 = 1 - beta;double b2 = (1 - beta) / 2;*a = a0;*(a + 1) = a1;*(a + 2) = a2;*b = b0;*(b + 1) = b1;*(b + 2) = b2;
}// 二阶低通滤波函数
double lowPassFilter(double input, double *prevInputs, double *prevOutputs, double *a, double *b) {double output = *b * input + *b * prevInputs[0] + *b * prevInputs[1] - *a * prevOutputs[0] - *a * prevOutputs[1];prevInputs[1] = prevInputs[0];prevInputs[0] = input;prevOutputs[1] = prevOutputs[0];prevOutputs[0] = output;return output;
}int main() {double a[3], b[3];calculateFilterCoefficients(a, b);double prevInputs[2] = {0};double prevOutputs[2] = {0};double input = 10; // 输入值,可根据实际情况修改double filteredOutput = lowPassFilter(input, prevInputs, prevOutputs, a, b);printf("滤波后的输出: %f\n", filteredOutput);return 0;
}/**
如果你在使用gcc编译含数学函数的 C 程序时,出现undefined reference to 'sin'、undefined reference to 'cos'等错误,一般是由于缺少库造成的。因为在 Ubuntu 系统中,gcc的数学函数(如sin、cos等)是定义在libm.so里面的,而数学库不在默认路径下。通过添加-lm选项,就可以告诉编译器到正确的库中查找这些函数。注意:在使用cmake进行编译时,需要添加命令target_link_libraries(your_target_name m)来链接数学库,其中your_target_name是你的目标名称。
*/
经我实际验证ubuntu20,的math库在如下路径
dpkg -l | grep math
实现2
#include <stdio.h>
#include <math.h>// 二阶低通滤波器系数
typedef struct {double a0, a1, a2, b1, b2;
} FilterCoefficients;// 计算二阶低通滤波器系数
void calculateFilterCoefficients(double cutoffFrequency, double samplingFrequency, FilterCoefficients *coefficients) {double omega = 2.0 * 3.14159 * cutoffFrequency / samplingFrequency;double cosOmega = cos(omega);double sinOmega = sin(omega);double alpha = sinOmega / (2.0 * 0.707);double a0 = 1 + alpha;double a1 = -2 * cosOmega;double a2 = 1 - alpha;double b1 = -2 * cosOmega;double b2 = 1 - alpha;coefficients->a0 = 1.0 / a0;coefficients->a1 = a1 / a0;coefficients->a2 = a2 / a0;coefficients->b1 = b1 / a0;coefficients->b2 = b2 / a0;
}// 二阶低通滤波器函数
void secondOrderLowPassFilter(double input[], double output[], int length, FilterCoefficients coefficients) {output[0] = input[0];output[1] = coefficients.a0 * input[1] + coefficients.a1 * input[0] + coefficients.b1 * output[0];for (int i = 2; i < length; i++) {output[i] = coefficients.a0 * input[i] + coefficients.a1 * input[i - 1] + coefficients.a2 * input[i - 2]- coefficients.b1 * output[i - 1] - coefficients.b2 * output[i - 2];}
}int main() {double cutoffFrequency = 10.0; // 截止频率double samplingFrequency = 50.0; // 采样频率FilterCoefficients coefficients;calculateFilterCoefficients(cutoffFrequency, samplingFrequency, &coefficients);double input[] = {1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0};double output[10];int length = 10;secondOrderLowPassFilter(input, output, length, coefficients);for (int i = 0; i < length; i++) {printf("Output[%d] = %f\n", i, output[i]);}return 0;
}
实验结果:
相关文章:

C/C++编程-算法学习-数字滤波器
数字滤波器 一阶低通滤波器结论推导11. 基本公式推导2. 截止频率 和 采样频率 推导 实现 二阶低通滤波器实现1实现2 一阶低通滤波器 结论 其基本原理基于以下公式: o u t p u t [ n ] α ∗ i n p u t [ n ] ( 1 − α ) ∗ o u t p u t [ n − 1 ] output[n] …...

maven介绍 搭建Nexus3(maven私服搭建)
Maven是一个强大的项目管理工具,它基于项目对象模型(POM:Project Object Model)的概念,通过XML格式的配置文件(pom.xml)来管理项目的构建 Maven确实可以被视为一种工程管理工具或项目自动化构…...

电商项目之如何判断线程池是否执行完所有任务
文章目录 1 问题背景2 前言3 4种常用的方法4 代码4.1 isTerminated()4.2 线程池的任务总数是否等于已执行的任务数4.3 CountDownLatch计数器4.4 CyclicBarrier计数器 1 问题背景 真实生产环境的电商项目,常使用线程池应用于执行大批量操作达到高性能的效果。应用场景…...

【前端 15】Vue生命周期
Vue生命周期 在Vue.js中,了解组件的生命周期对于开发者来说是至关重要的。Vue的生命周期指的是Vue实例从创建到销毁的一系列过程,每个阶段都对应着特定的生命周期钩子(或称为生命周期方法),允许我们在不同的时间点加入…...

PCIe总线-Linux内核PCIe软件框架分析(十一)
1.简介 Linux内核PCIe软件框架如下图所示,按照PCIe的模式,可分为RC和EP软件框架。RC的软件框架分为五层,第一层为RC Controller Driver,和RC Controller硬件直接交互,不同的RC Controller,其驱动实现也不相…...

视觉SLAM第二讲
SLAM分为定位和建图两个问题。 定位问题 定位问题是通过传感器观测数据直接或间接求解位置和姿态。 通常可以分为两类:基于已知地图的定位和基于未知地图的定位。 基于已知地图的定位 利用预先构建的地图,结合传感器数据进行全局定位。SLAM中的全局…...

mysql1055报错解决方法
目录 一、mysql版本 二、 问题描述 三、解决方法 1.方法一(临时) 2.方法二(永久) 一、mysql版本 mysql版本:5.7.23 二、 问题描述 在查询时使用group by语句,出现错误代码:1055…...
Java的@DateTimeFormat注解与@JsonFormat注解的使用对比
Java的DateTimeFormat注解与JsonFormat注解的使用对比 在Java开发中,处理日期和时间格式时,我们经常会使用到DateTimeFormat和JsonFormat注解。这两个注解主要用于格式化日期和时间,但在使用场景和功能上有所不同。本文将详细介绍这两个注解…...

德国云手机:企业移动办公解决方案
在现代商业环境中,移动办公已经成为一种趋势。德国云手机作为一种高效的解决方案,为企业提供了强大的支持。本文将探讨德国云手机如何优化企业的移动办公环境。 一、德国云手机的主要优势 高灵活性 德国云手机具有高度的灵活性,能够根据用户需…...

【React】useState:状态管理的基石
文章目录 一、什么是 useState?二、useState 的基本用法三、useState 的工作原理四、高级用法五、最佳实践 在现代前端开发中,React 是一个非常流行的库,而 useState 是 React 中最重要的 Hook 之一。useState 使得函数组件能够拥有自己的状态…...
商品中心关于缓存热key的解决方案
缓存热key一旦被击穿,流量势必会打到数据库,如果数据库崩了,游戏直接结束。 从两点来讨论:如何监控、如何解决。 如何监控 通过业务评估:比如营销活动推出的商品或者热卖的商品。基于LRU的命令,redis-cl…...

【Python系列】Parquet 数据处理与合并:高效数据操作实践
💝💝💝欢迎来到我的博客,很高兴能够在这里和您见面!希望您在这里可以感受到一份轻松愉快的氛围,不仅可以获得有趣的内容和知识,也可以畅所欲言、分享您的想法和见解。 推荐:kwan 的首页,持续学…...

大脑自组织神经网络通俗讲解
大脑自组织神经网络的核心概念 大脑自组织神经网络,是指大脑中的神经元通过自组织的方式形成复杂的网络结构,从而实现信息的处理和存储。这一过程涉及到神经元的生长、连接和重塑,是大脑学习和记忆的基础。其核心公式涉及神经网络的权重更新…...
org.springframework.context.annotation.DeferredImportSelector如何使用?
DeferredImportSelector 是 Spring 框架中一个比较高级的功能,主要用于在 Spring 应用上下文的配置阶段延迟导入某些组件或配置。这个功能特别有用,比如在处理依赖于其他自动配置的场景,或者当你想基于某些条件来决定是否导入特定的配置类时。…...
缓慢变化维
缓慢变化维 缓慢变化维(Slowly Changing Dimensions,简称SCD)是数据仓库中的一个重要概念,用于处理维度表中数据随时间发生的变化。以下是一个具体的例子来描述缓慢变化维: 假设我们有一个销售数据仓库,其…...
Vue常用的指令都有哪些?都有什么作用?什么是自定义指令?
常用指令: 1、v-model 多用于表单元素实现双向数据绑定 (同angular中的ng-model) 2、v-for格式: v-for"字段名in(of)数组json"循环数组或json(同angular中的ng repeat),需要注意从vue2开始取消了$index 3、v-show 4、v-hide 隐藏内容 (同a…...

kettle从入门到精通 第八十一课 ETL之kettle kettle中的json对象字段写入postgresql中的json字段正确姿势
1、上一节可讲解了如何将json数据写入pg数据库表中的json字段,虽然实现了效果,但若客户继续使用表输出步骤则仍然无法解决问题。 正确的的解决方式是设置数据库连接参数stringtypeunspecified 2、stringtypeunspecified 参数的作用: 当设置…...

计算机网络实验-RIP配置与分析
前言:本博客仅作记录学习使用,部分图片出自网络,如有侵犯您的权益,请联系删除 一、相关知识 路由信息协议(Routing Information Protocol,RIP)是一种基于距离向量(Distance-Vector&…...

33.【C语言】实践扫雷游戏
预备知识: 第13篇 一维数组 第13.5篇 二维数组 第28篇 库函数 第29篇 自定义函数 第30篇 函数补充 0x1游戏的运行: 1.随机布置雷 2.排雷 基本规则: 点开一个格子后,显示1,对于9*9,代表以1为中心的去…...

git学习笔记(总结了常见命令与学习中遇到的问题和解决方法)
前言 最近学习完git,学习过程中也遇到了很多问题,这里给大家写一篇总结性的博客,主要大概讲述git命令和部分难点问题(简单的知识点这里就不再重复讲解了) 一.git概述 1.1什么是git Git是一个分布式的版本控制软件。…...
SciencePlots——绘制论文中的图片
文章目录 安装一、风格二、1 资源 安装 # 安装最新版 pip install githttps://github.com/garrettj403/SciencePlots.git# 安装稳定版 pip install SciencePlots一、风格 简单好用的深度学习论文绘图专用工具包–Science Plot 二、 1 资源 论文绘图神器来了:一行…...
在 Nginx Stream 层“改写”MQTT ngx_stream_mqtt_filter_module
1、为什么要修改 CONNECT 报文? 多租户隔离:自动为接入设备追加租户前缀,后端按 ClientID 拆分队列。零代码鉴权:将入站用户名替换为 OAuth Access-Token,后端 Broker 统一校验。灰度发布:根据 IP/地理位写…...

【快手拥抱开源】通过快手团队开源的 KwaiCoder-AutoThink-preview 解锁大语言模型的潜力
引言: 在人工智能快速发展的浪潮中,快手Kwaipilot团队推出的 KwaiCoder-AutoThink-preview 具有里程碑意义——这是首个公开的AutoThink大语言模型(LLM)。该模型代表着该领域的重大突破,通过独特方式融合思考与非思考…...

IoT/HCIP实验-3/LiteOS操作系统内核实验(任务、内存、信号量、CMSIS..)
文章目录 概述HelloWorld 工程C/C配置编译器主配置Makefile脚本烧录器主配置运行结果程序调用栈 任务管理实验实验结果osal 系统适配层osal_task_create 其他实验实验源码内存管理实验互斥锁实验信号量实验 CMISIS接口实验还是得JlINKCMSIS 简介LiteOS->CMSIS任务间消息交互…...

Map相关知识
数据结构 二叉树 二叉树,顾名思义,每个节点最多有两个“叉”,也就是两个子节点,分别是左子 节点和右子节点。不过,二叉树并不要求每个节点都有两个子节点,有的节点只 有左子节点,有的节点只有…...

dify打造数据可视化图表
一、概述 在日常工作和学习中,我们经常需要和数据打交道。无论是分析报告、项目展示,还是简单的数据洞察,一个清晰直观的图表,往往能胜过千言万语。 一款能让数据可视化变得超级简单的 MCP Server,由蚂蚁集团 AntV 团队…...
ip子接口配置及删除
配置永久生效的子接口,2个IP 都可以登录你这一台服务器。重启不失效。 永久的 [应用] vi /etc/sysconfig/network-scripts/ifcfg-eth0修改文件内内容 TYPE"Ethernet" BOOTPROTO"none" NAME"eth0" DEVICE"eth0" ONBOOT&q…...
Java 二维码
Java 二维码 **技术:**谷歌 ZXing 实现 首先添加依赖 <!-- 二维码依赖 --><dependency><groupId>com.google.zxing</groupId><artifactId>core</artifactId><version>3.5.1</version></dependency><de…...

深入浅出深度学习基础:从感知机到全连接神经网络的核心原理与应用
文章目录 前言一、感知机 (Perceptron)1.1 基础介绍1.1.1 感知机是什么?1.1.2 感知机的工作原理 1.2 感知机的简单应用:基本逻辑门1.2.1 逻辑与 (Logic AND)1.2.2 逻辑或 (Logic OR)1.2.3 逻辑与非 (Logic NAND) 1.3 感知机的实现1.3.1 简单实现 (基于阈…...
Python 训练营打卡 Day 47
注意力热力图可视化 在day 46代码的基础上,对比不同卷积层热力图可视化的结果 import torch import torch.nn as nn import torch.optim as optim from torchvision import datasets, transforms from torch.utils.data import DataLoader import matplotlib.pypl…...