当前位置: 首页 > news >正文

大脑自组织神经网络通俗讲解

大脑自组织神经网络的核心概念

大脑自组织神经网络,是指大脑中的神经元通过自组织的方式形成复杂的网络结构,从而实现信息的处理和存储。这一过程涉及到神经元的生长、连接和重塑,是大脑学习和记忆的基础。其核心公式涉及神经网络的权重更新和激活函数,这些公式在深度学习中也有着广泛的应用。

项目描述
神经元大脑的基本计算单元,负责接收、整合和传递信息。
自组织神经元之间通过相互连接和重塑,形成复杂的网络结构。
权重神经元之间的连接强度,决定了信息传递的效率。
激活函数决定神经元是否激活(即是否传递信息)的函数。

通俗解释与案例

  1. 大脑自组织神经网络的核心思想

    • 想象一下,你的大脑就像是一个巨大的工地,神经元就像是工人,他们不断地建立连接(就像是搭建桥梁),拆除旧的连接(就像是拆除旧建筑),从而形成一个高效的信息处理网络。
    • 这个过程是自组织的,意味着它不需要外部的指导,只需要根据神经元之间的活动和信息传递来自我调整。
  2. 大脑自组织神经网络的应用

    • 在深度学习中,我们也使用类似的神经网络结构来处理信息。比如,在图像识别任务中,神经网络通过学习大量的图像数据,自组织地形成能够识别不同图像的特征检测器。
    • 这就像是你的大脑通过学习不同的面孔,自组织地形成能够识别不同人的面部特征的网络。
  3. 大脑自组织神经网络的性质

    • 大脑自组织神经网络具有一些重要的性质,比如自适应性(能够根据环境变化自我调整)和鲁棒性(对噪声和干扰具有一定的抵抗能力)。
    • 这些性质使得大脑自组织神经网络在处理复杂的信息和任务时非常有效。
  4. 大脑自组织神经网络的图像

    • 大脑自组织神经网络的图像可以看作是一个由许多节点(神经元)和边(连接)组成的复杂图。随着时间的推移,这个图会不断地变化和演化。

具体来说,神经网络的权重更新公式可以表示为:

w i j = w i j + η δ j x i w_{ij} = w_{ij} + \eta \delta_j x_i wij=wij+ηδjxi

其中, w i j w_{ij} wij 表示神经元 i i i 到神经元 j j j 的连接权重, η \eta η 表示学习率, δ j \delta_j δj 表示神经元 j j j 的误差信号, x i x_i xi 表示神经元 i i i 的输入。

激活函数的一个常见例子是 Sigmoid 函数,其公式为:

f ( x ) = 1 1 + e − x f(x) = \frac{1}{1 + e^{-x}} f(x)=1+ex1

这个函数可以将任意实数输入转换为 0 到 1 之间的输出,从而决定神经元是否激活。

项目描述
权重 w i j w_{ij} wij 表示神经元之间的连接强度。
学习率 η \eta η 控制了权重更新的速度。
误差信号 δ j \delta_j δj 表示神经元 j j j 的输出与目标值之间的差异。
输入 x i x_i xi 表示神经元 i i i 的输入信息。
激活函数 f ( x ) f(x) f(x) 决定了神经元是否激活,从而传递信息。

在这里插入图片描述

公式探索与推演运算

  1. 权重更新公式

    • w i j = w i j + η δ j x i w_{ij} = w_{ij} + \eta \delta_j x_i wij=wij+ηδjxi:这个公式表示,神经元 i i i 到神经元 j j j 的连接权重会根据误差信号 δ j \delta_j δj、输入 x i x_i xi 和学习率 η \eta η 进行更新。
  2. 激活函数

    • f ( x ) = 1 1 + e − x f(x) = \frac{1}{1 + e^{-x}} f(x)=1+ex1:Sigmoid 函数是一个常用的激活函数,它可以将任意实数输入转换为 0 到 1 之间的输出。
  3. 多层神经网络的权重更新

    • 在多层神经网络中,权重更新公式会涉及到链式法则,即误差信号会沿着网络反向传播,每一层的权重都会根据下一层的误差信号进行更新。
  4. 损失函数

    • 在深度学习中,我们通常会定义一个损失函数来衡量模型的预测值与目标值之间的差异。权重更新的目标就是最小化这个损失函数。
  5. 反向传播算法

    • 反向传播算法是一种常用的训练神经网络的方法。它通过计算损失函数关于每个权重的梯度,并使用梯度下降法来更新权重。

关键词提炼

#大脑自组织神经网络
#权重更新公式
#激活函数
#深度学习应用
#反向传播算法

相关文章:

大脑自组织神经网络通俗讲解

大脑自组织神经网络的核心概念 大脑自组织神经网络,是指大脑中的神经元通过自组织的方式形成复杂的网络结构,从而实现信息的处理和存储。这一过程涉及到神经元的生长、连接和重塑,是大脑学习和记忆的基础。其核心公式涉及神经网络的权重更新…...

org.springframework.context.annotation.DeferredImportSelector如何使用?

DeferredImportSelector 是 Spring 框架中一个比较高级的功能,主要用于在 Spring 应用上下文的配置阶段延迟导入某些组件或配置。这个功能特别有用,比如在处理依赖于其他自动配置的场景,或者当你想基于某些条件来决定是否导入特定的配置类时。…...

缓慢变化维

缓慢变化维 缓慢变化维(Slowly Changing Dimensions,简称SCD)是数据仓库中的一个重要概念,用于处理维度表中数据随时间发生的变化。以下是一个具体的例子来描述缓慢变化维: 假设我们有一个销售数据仓库,其…...

Vue常用的指令都有哪些?都有什么作用?什么是自定义指令?

常用指令: 1、v-model 多用于表单元素实现双向数据绑定 (同angular中的ng-model) 2、v-for格式: v-for"字段名in(of)数组json"循环数组或json(同angular中的ng repeat),需要注意从vue2开始取消了$index 3、v-show 4、v-hide 隐藏内容 (同a…...

kettle从入门到精通 第八十一课 ETL之kettle kettle中的json对象字段写入postgresql中的json字段正确姿势

1、上一节可讲解了如何将json数据写入pg数据库表中的json字段,虽然实现了效果,但若客户继续使用表输出步骤则仍然无法解决问题。 正确的的解决方式是设置数据库连接参数stringtypeunspecified 2、stringtypeunspecified 参数的作用: 当设置…...

计算机网络实验-RIP配置与分析

前言:本博客仅作记录学习使用,部分图片出自网络,如有侵犯您的权益,请联系删除 一、相关知识 路由信息协议(Routing Information Protocol,RIP)是一种基于距离向量(Distance-Vector&…...

33.【C语言】实践扫雷游戏

预备知识: 第13篇 一维数组 第13.5篇 二维数组 第28篇 库函数 第29篇 自定义函数 第30篇 函数补充 0x1游戏的运行: 1.随机布置雷 2.排雷 基本规则: 点开一个格子后,显示1,对于9*9,代表以1为中心的去…...

git学习笔记(总结了常见命令与学习中遇到的问题和解决方法)

前言 最近学习完git,学习过程中也遇到了很多问题,这里给大家写一篇总结性的博客,主要大概讲述git命令和部分难点问题(简单的知识点这里就不再重复讲解了) 一.git概述 1.1什么是git Git是一个分布式的版本控制软件。…...

【计算机网络】TCP协议详解

欢迎来到 破晓的历程的 博客 ⛺️不负时光,不负己✈️ 文章目录 1、引言2、udp和tcp协议的异同3、tcp服务器3.1、接口认识3.2、服务器设计 4、tcp客户端4.1、客户端设计4.2、说明 5、再研Tcp服务端5.1、多进程版5.2、多线程版 5、守护进程化5.1、什么是守护进程5.2…...

2.3 大模型硬件基础:AI芯片(上篇) —— 《带你自学大语言模型》系列

本系列目录 《带你自学大语言模型》系列部分目录及计划,完整版目录见:带你自学大语言模型系列 —— 前言 第一部分 走进大语言模型(科普向) 第一章 走进大语言模型 1.1 从图灵机到GPT,人工智能经历了什么&#xff1…...

Java | Leetcode Java题解之第279题完全平方数

题目&#xff1a; 题解&#xff1a; class Solution {public int numSquares(int n) {if (isPerfectSquare(n)) {return 1;}if (checkAnswer4(n)) {return 4;}for (int i 1; i * i < n; i) {int j n - i * i;if (isPerfectSquare(j)) {return 2;}}return 3;}// 判断是否为…...

JS逆向高级爬虫

JS逆向高级爬虫 JS逆向的目的是通过运行本地JS的文件或者代码,以实现脱离他的网站和浏览器,并且还能拿到和浏览器加密一样的效果。 10.1、编码算法 【1】摘要算法&#xff1a;一切从MD5开始 MD5是一个非常常见的摘要(hash)逻辑. 其特点就是小巧. 速度快. 极难被破解. 所以,…...

基于Golang+Vue3快速搭建的博客系统

WANLI 博客系统 项目介绍 基于vue3和gin框架开发的前后端分离个人博客系统&#xff0c;包含md格式的文本编辑展示&#xff0c;点赞评论收藏&#xff0c;新闻热点&#xff0c;匿名聊天室&#xff0c;文章搜索等功能。 项目在线访问&#xff1a;http://bloggo.chat/ 访客账号…...

DVWA中命令执行漏洞细说

在攻击中&#xff0c;命令注入是比较常见的方式&#xff0c;今天我们细说在软件开发中如何避免命令执行漏洞 我们通过DVWA中不同的安全等级来细说命令执行漏洞 1、先调整DVWA的安全等级为Lower,调整等级在DVWA Security页面调整 2、在Command Injection页面输入127.0.0.1&…...

【YOLOv5/v7改进系列】引入中心化特征金字塔的EVC模块

一、导言 现有的特征金字塔方法过于关注层间特征交互而忽视了层内特征的调控。尽管有些方法尝试通过注意力机制或视觉变换器来学习紧凑的层内特征表示&#xff0c;但这些方法往往忽略了对密集预测任务非常重要的被忽视的角落区域。 为了解决这个问题&#xff0c;作者提出了CF…...

【QT】常用控件(概述、QWidget核心属性、按钮类控件、显示类控件、输入类控件、多元素控件、容器类控件、布局管理器)

一、控件概述 Widget 是 Qt 中的核心概念&#xff0c;英文原义是 “小部件”&#xff0c;此处也把它翻译为 “控件”。控件是构成一个图形化界面的基本要素。 像上述示例中的按钮、列表视图、树形视图、单行输入框、多行输入框、滚动条、下拉框都可以称为 “控件”。 Qt 作为…...

【Python】字母 Rangoli 图案

一、题目 You are given an integer N. Your task is to print an alphabet rangoli of size N. (Rangoli is a form of Indian folk art based on creation of patterns.) Different sizes of alphabet rangoli are shown below: # size 3 ----c---- --c-b-c-- c-b-a-b-c --…...

html+css 实现水波纹按钮

前言&#xff1a;哈喽&#xff0c;大家好&#xff0c;今天给大家分享htmlcss 绚丽效果&#xff01;并提供具体代码帮助大家深入理解&#xff0c;彻底掌握&#xff01;创作不易&#xff0c;如果能帮助到大家或者给大家一些灵感和启发&#xff0c;欢迎收藏关注哦 &#x1f495; 文…...

科技与占星的融合:AI 智能占星师

本文由 ChatMoney团队出品 在科技的前沿领域&#xff0c;诞生了一位独特的存在——AI占星师。它并非传统意义上的占星师&#xff0c;而是融合了先进的人工智能技术与神秘的占星学知识。 这能够凭借其强大的数据分析能力和精准的算法&#xff0c;对星辰的排列和宇宙的能量进行深…...

判断字符串,数组方法

判断字符串方法 在JavaScript中&#xff0c;可以使用typeof操作符来判断一个变量是否为字符串。 function isString(value) {return typeof value string; } 判断数组 在JavaScript中&#xff0c;typeof操作符并不足以准确判断一个变量是否为数组&#xff0c;因为typeof会…...

大数据零基础学习day1之环境准备和大数据初步理解

学习大数据会使用到多台Linux服务器。 一、环境准备 1、VMware 基于VMware构建Linux虚拟机 是大数据从业者或者IT从业者的必备技能之一也是成本低廉的方案 所以VMware虚拟机方案是必须要学习的。 &#xff08;1&#xff09;设置网关 打开VMware虚拟机&#xff0c;点击编辑…...

蓝牙 BLE 扫描面试题大全(2):进阶面试题与实战演练

前文覆盖了 BLE 扫描的基础概念与经典问题蓝牙 BLE 扫描面试题大全(1)&#xff1a;从基础到实战的深度解析-CSDN博客&#xff0c;但实际面试中&#xff0c;企业更关注候选人对复杂场景的应对能力&#xff08;如多设备并发扫描、低功耗与高发现率的平衡&#xff09;和前沿技术的…...

现代密码学 | 椭圆曲线密码学—附py代码

Elliptic Curve Cryptography 椭圆曲线密码学&#xff08;ECC&#xff09;是一种基于有限域上椭圆曲线数学特性的公钥加密技术。其核心原理涉及椭圆曲线的代数性质、离散对数问题以及有限域上的运算。 椭圆曲线密码学是多种数字签名算法的基础&#xff0c;例如椭圆曲线数字签…...

涂鸦T5AI手搓语音、emoji、otto机器人从入门到实战

“&#x1f916;手搓TuyaAI语音指令 &#x1f60d;秒变表情包大师&#xff0c;让萌系Otto机器人&#x1f525;玩出智能新花样&#xff01;开整&#xff01;” &#x1f916; Otto机器人 → 直接点明主体 手搓TuyaAI语音 → 强调 自主编程/自定义 语音控制&#xff08;TuyaAI…...

scikit-learn机器学习

# 同时添加如下代码, 这样每次环境(kernel)启动的时候只要运行下方代码即可: # Also add the following code, # so that every time the environment (kernel) starts, # just run the following code: import sys sys.path.append(/home/aistudio/external-libraries)机…...

省略号和可变参数模板

本文主要介绍如何展开可变参数的参数包 1.C语言的va_list展开可变参数 #include <iostream> #include <cstdarg>void printNumbers(int count, ...) {// 声明va_list类型的变量va_list args;// 使用va_start将可变参数写入变量argsva_start(args, count);for (in…...

Linux中《基础IO》详细介绍

目录 理解"文件"狭义理解广义理解文件操作的归类认知系统角度文件类别 回顾C文件接口打开文件写文件读文件稍作修改&#xff0c;实现简单cat命令 输出信息到显示器&#xff0c;你有哪些方法stdin & stdout & stderr打开文件的方式 系统⽂件I/O⼀种传递标志位…...

区块链技术概述

区块链技术是一种去中心化、分布式账本技术&#xff0c;通过密码学、共识机制和智能合约等核心组件&#xff0c;实现数据不可篡改、透明可追溯的系统。 一、核心技术 1. 去中心化 特点&#xff1a;数据存储在网络中的多个节点&#xff08;计算机&#xff09;&#xff0c;而非…...

comfyui 工作流中 图生视频 如何增加视频的长度到5秒

comfyUI 工作流怎么可以生成更长的视频。除了硬件显存要求之外还有别的方法吗&#xff1f; 在ComfyUI中实现图生视频并延长到5秒&#xff0c;需要结合多个扩展和技巧。以下是完整解决方案&#xff1a; 核心工作流配置&#xff08;24fps下5秒120帧&#xff09; #mermaid-svg-yP…...

JDK 17 序列化是怎么回事

如何序列化&#xff1f;其实很简单&#xff0c;就是根据每个类型&#xff0c;用工厂类调用。逐个完成。 没什么漂亮的代码&#xff0c;只有有效、稳定的代码。 代码中调用toJson toJson 代码 mapper.writeValueAsString ObjectMapper DefaultSerializerProvider 一堆实…...