2. 卷积神经网络无法绕开的神——LeNet
卷积神经网络无法绕开的大神——LeNet
- 1. 基本架构
- 2. LeNet 5
- 3. LeNet 5 代码
1. 基本架构

- 特征抽取模块
- 可学习的分类器模块
2. LeNet 5

- LeNet 5: 5 表示的是5个核心层,2个卷积层,3个全连接层.
- 核心权重层:卷积层、全连接层、循环层,Batchnorm / Dropout 这些都属于附属层。
- Convolutions, 32×32 → 28×28:卷积过后,图像像素损失了4个,是因为 kernal_size是5×5. 那个年代是不补零的。
- Subsampling: 亚采样,也叫池化层,池化一次,图像大小缩小一般,层数不变。
- 卷积负责把图像层数变得越来越多,池化负责把图像变得越来越小。最后使用全连接,输出类别。
3. LeNet 5 代码
import torch
from torch import nnclass ConvBlock(nn.Module):"""一层卷积:- 卷积层- 批规范化层- 激活层"""def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, padding=1):super().__init__()self.conv = nn.Conv2d(in_channels=in_channels, out_channels=out_channels,kernel_size=kernel_size, stride=stride,padding=padding)self.bn = nn.BatchNorm2d(num_features=out_channels)self.relu = nn.ReLU()def forward(self, x):x = self.conv(x)x = self.bn(x)x = self.relu(x)return xclass LeNet(nn.Module):def __init__(self):super().__init__()# 1, 特征抽取部分self.feature_extractor = nn.Sequential(# 卷积层1ConvBlock(in_channels=1, out_channels=6, kernel_size=5,stride=1,padding=0),# 亚采样(池化)nn.MaxPool2d(kernel_size=2, stride=2, padding=0),# 卷积层2ConvBlock(in_channels=6, out_channels=16, kernel_size=5,stride=1,padding=0),# 亚采样(池化)nn.MaxPool2d(kernel_size=2, stride=2, padding=0),)# 2, 分类self.classifier = nn.Sequential(nn.Flatten(),nn.Linear(in_features=400, out_features=120),nn.ReLU(),nn.Linear(in_features=120, out_features=84),nn.ReLU(),nn.Linear(in_features=84, out_features=10))def forward(self, x):# 1, 提取特征x = self.feature_extractor(x)# 2, 分类输出x = self.classifier(x)return xif __name__ == "__main__":model = LeNet()print(model)x = torch.randn(1, 1, 32, 32)y = model(x)print(y.shape)
相关文章:
2. 卷积神经网络无法绕开的神——LeNet
卷积神经网络无法绕开的大神——LeNet 1. 基本架构2. LeNet 53. LeNet 5 代码 1. 基本架构 特征抽取模块可学习的分类器模块 2. LeNet 5 LeNet 5: 5 表示的是5个核心层,2个卷积层,3个全连接层.核心权重层:卷积层、全连接层、循环层ÿ…...
【区块链】JavaScript连接web3钱包,实现测试网络中的 Sepolia ETH余额查询、转账功能
审核看清楚了 ! 这是以太坊测试网络!用于学习的测试网络!!! 有关web3 和区块链的内容为什么要给我审核不通过? 别人凭什么可以发! 目标成果: 实现功能分析: 显示账户信…...
关于珞石机器人二次开发SDK的posture函数的算法RX RY RZ纠正 C#
在珞石SDK二次开发的函数钟,获取当前机器人位姿的函数posture函数在输出时会发现数据不正确,与示教器数据不一致。 其中第一个数据正确 第二三各数据为相反 第四五六各数据为弧度制 转换方法为(弧度/PI)*180度 然后发现第四个数据还要加上180度 第五…...
【Three.js基础学习】17.imported-models
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 前言 课程回顾: 如何在three.js 中引入不同的模型? 1. 格式 (不同的格式) https://en.wikipedia.org/wiki/List_of_file_form…...
Spring Bean - xml 配置文件创建对象
类型: 1、值类型 2、null (标签) 3、特殊符号 (< -> < ) 4、CDATA <?xml version"1.0" encoding"UTF-8"?> <beans xmlns"http://www.springframework.org/schema/bea…...
uniapp map组件自定义markers标记点
需求是根据后端返回数据在地图上显示标记点,并且根据数据状态控制标记点颜色,标记点背景通过两张图片实现控制 <mapstyle"width: 100vw; height: 100vh;":markers"markers":longitude"locaInfo.longitude":latitude&…...
Windows:批处理脚本学习
目录 一、第一个批处理文件 1. &&和 | | 2. | 和 & 二、变量 1.传参变量%name 2.初始化变量set命令 3.变量的使用 4.局部变量与全局变量 5.使用环境变量 6.扩充变量语法 三、注释REM和 :: 四:函数 1.定义函数 2.…...
Dav_笔记10:Using SQL Plan Management之4
SQL管理库 SQL管理库(SMB)是驻留在SYSAUX表空间中的数据字典的一部分。它存储语句日志,计划历史记录,SQL计划基准和SQL配置文件。为了允许每周清除未使用的计划和日志,SMB使用自动空间管理。 您还可以手动将计划添加到SMB以获取一组SQL语句。从Oracle Database 11g之前的…...
通过json传递请求参数,如何处理动态参数和接口依赖
嗨,大家好,我是兰若姐姐,今天给大家讲一下如何通过json传递请求参数,如何处理动态参数和接口依赖 1. 使用配置文件和模板 在 test_data.json 中,你可以使用一些占位符或模板变量,然后在运行测试之前&…...
[240727] Qt Creator 14 发布 | AMD 推迟 Ryzen 9000芯片发布
目录 Qt Creator 14 发布Qt Creator 14 版本发布,带来一系列新功能和改进终端用户可通过命令行方式查看此新闻终端用户可通过命令行方式安装软件: AMD 推迟 Ryzen 9000芯片发布 Qt Creator 14 发布 Qt Creator 14 版本发布,带来一系列新功能…...
PLSQL Developer工具查询数据,报错(动态性能表不可访问)
解决的问题: 解决方案: 在配置-首选项-选项,取消勾选“自动统计”,保存之后即可查询数据...
基于 HTML+ECharts 实现智慧交通数据可视化大屏(含源码)
构建智慧交通数据可视化大屏:基于 HTML 和 ECharts 的实现 随着城市化进程的加快,智慧交通系统已成为提升城市管理效率和居民生活质量的关键。通过数据可视化,交通管理部门可以实时监控交通流量、事故发生率、道路状况等关键指标,…...
探索 IT 领域的新宠儿:量子计算
目录 引言:从经典到量子的飞跃 量子计算的基本概念 量子计算的独特优势 量子计算的深度剖析 量子计算的最新进展 量子计算的行业应用前景 面临的挑战与未来展望 结语:迎接量子计算的新时代 引言:从经典到量子的飞跃 在信息技术飞速发…...
TSPNet代码分析
论文《Realigning Confidence with Temporal Saliency Information for Point-Level Weakly-Supervised Temporal Action Localization》的official code分析 论文解读 代码分析 先看看训练过程,执行main if __name__ == __main__:exp = Exp()if exp.config.mode == eval:…...
Ubuntu上安装anaconda创建虚拟环境(各种踩坑版)
之前都是在Windows桌面版进行深度学习的环境部署及训练,今天尝试了一下在Ubuntu上进行环境部署,踩了不少坑,提供一些解决办法给大家避雷。 目录 一、下载和安装anaconda 1. 下载 2. 安装 二、创建虚拟环境 一、下载和安装anaconda 1. …...
DC-5靶机通关
今天我们来学习DC-5靶机!!! 1.实验环境 攻击机:kali2023.2 靶机:DC-5 2.1扫描网段 2.2扫描端口 这里后面这俩端口有点似曾相识啊,在dc3里面好像见过,那咱们给这两个端口来个更详细的扫描&…...
AI学习记录 -使用react开发一个网页,对接chatgpt接口,附带一些英语的学习prompt
实现了如下功能(使用react实现,原创) 实现功能: 1、对接gpt35模型问答,并实现了流式传输(在java端) 2、在实际使用中,我们的问答历史会经常分享给他人,所以下图的 copy …...
MongoDB多数据源配置与切换
在MongoDB中配置和使用多数据源主要涉及以下几个步骤: 定义多个数据源的配置: 在应用程序的配置文件中,定义多个MongoDB的数据源,例如在Spring Boot中可以通过application.yml或application.properties文件进行配置。 创建多个Mo…...
Mongodb入门介绍
文章目录 1、Mongodb:NoSQL数据库,分布式的文档型数据库2、适合场景:3、不适合场景:4、概念5、总结 1、Mongodb:NoSQL数据库,分布式的文档型数据库 2、适合场景: 1、web网站数据存储ÿ…...
docker前端部署
挂载,把自己的目录位置,挂载到容器内的HTML...
基于FPGA的PID算法学习———实现PID比例控制算法
基于FPGA的PID算法学习 前言一、PID算法分析二、PID仿真分析1. PID代码2.PI代码3.P代码4.顶层5.测试文件6.仿真波形 总结 前言 学习内容:参考网站: PID算法控制 PID即:Proportional(比例)、Integral(积分&…...
51c自动驾驶~合集58
我自己的原文哦~ https://blog.51cto.com/whaosoft/13967107 #CCA-Attention 全局池化局部保留,CCA-Attention为LLM长文本建模带来突破性进展 琶洲实验室、华南理工大学联合推出关键上下文感知注意力机制(CCA-Attention),…...
JVM垃圾回收机制全解析
Java虚拟机(JVM)中的垃圾收集器(Garbage Collector,简称GC)是用于自动管理内存的机制。它负责识别和清除不再被程序使用的对象,从而释放内存空间,避免内存泄漏和内存溢出等问题。垃圾收集器在Ja…...
linux 错误码总结
1,错误码的概念与作用 在Linux系统中,错误码是系统调用或库函数在执行失败时返回的特定数值,用于指示具体的错误类型。这些错误码通过全局变量errno来存储和传递,errno由操作系统维护,保存最近一次发生的错误信息。值得注意的是,errno的值在每次系统调用或函数调用失败时…...
令牌桶 滑动窗口->限流 分布式信号量->限并发的原理 lua脚本分析介绍
文章目录 前言限流限制并发的实际理解限流令牌桶代码实现结果分析令牌桶lua的模拟实现原理总结: 滑动窗口代码实现结果分析lua脚本原理解析 限并发分布式信号量代码实现结果分析lua脚本实现原理 双注解去实现限流 并发结果分析: 实际业务去理解体会统一注…...
Linux C语言网络编程详细入门教程:如何一步步实现TCP服务端与客户端通信
文章目录 Linux C语言网络编程详细入门教程:如何一步步实现TCP服务端与客户端通信前言一、网络通信基础概念二、服务端与客户端的完整流程图解三、每一步的详细讲解和代码示例1. 创建Socket(服务端和客户端都要)2. 绑定本地地址和端口&#x…...
处理vxe-table 表尾数据是单独一个接口,表格tableData数据更新后,需要点击两下,表尾才是正确的
修改bug思路: 分别把 tabledata 和 表尾相关数据 console.log() 发现 更新数据先后顺序不对 settimeout延迟查询表格接口 ——测试可行 升级↑:async await 等接口返回后再开始下一个接口查询 ________________________________________________________…...
给网站添加live2d看板娘
给网站添加live2d看板娘 参考文献: stevenjoezhang/live2d-widget: 把萌萌哒的看板娘抱回家 (ノ≧∇≦)ノ | Live2D widget for web platformEikanya/Live2d-model: Live2d model collectionzenghongtu/live2d-model-assets 前言 网站环境如下,文章也主…...
协议转换利器,profinet转ethercat网关的两大派系,各有千秋
随着工业以太网的发展,其高效、便捷、协议开放、易于冗余等诸多优点,被越来越多的工业现场所采用。西门子SIMATIC S7-1200/1500系列PLC集成有Profinet接口,具有实时性、开放性,使用TCP/IP和IT标准,符合基于工业以太网的…...
Elastic 获得 AWS 教育 ISV 合作伙伴资质,进一步增强教育解决方案产品组合
作者:来自 Elastic Udayasimha Theepireddy (Uday), Brian Bergholm, Marianna Jonsdottir 通过搜索 AI 和云创新推动教育领域的数字化转型。 我们非常高兴地宣布,Elastic 已获得 AWS 教育 ISV 合作伙伴资质。这一重要认证表明,Elastic 作为 …...
