Meta 发布 Llama3.1,一站教你如何推理、微调、部署大模型
最近这一两周看到不少互联网公司都已经开始秋招提前批了。不同以往的是,当前职场环境已不再是那个双向奔赴时代了。求职者在变多,HC 在变少,岗位要求还更高了。
最近,我们又陆续整理了很多大厂的面试题,帮助一些球友解惑答疑,分享技术面试中的那些弯弯绕绕。
《大模型面试宝典》(2024版) 发布!
《AIGC 面试宝典》圈粉无数!
喜欢本文记得收藏、关注、点赞。更多实战和面试交流,欢迎交流
文章目录
- 模型推理
- 模型微调
- 模型部署
- Llama3.1 工具调用服务实战
近日,Meta正式发布Llama 3.1,包含8B、70B 和405B三个规模,最大上下文提升到了128k。Llama系列模型是目前开源领域中用户最多、性能最强的大型模型系列之一。
本次Llama 3.1的要点有:
1.共有8B、70B及405B三种版本,其中405B版本是目前最大的开源模型之一;
2.该模型最大参数规模达到4050亿参数,在性能上超越了现有的顶级AI模型;
3.模型引入了更长的上下文窗口(最长可达128K tokens),能够处理更复杂的任务和对话;
4. 支持多语言输入和输出,增强了模型的通用性和适用范围;
5.提高了推理能力,特别是在解决复杂数学问题和即时生成内容方面表现突出。
为大家带来的一站式模型体验、下载、推理、微调、部署实战教程!
模型推理
以Llama-3.1-8B-Instruct为例:
import transformers
import torch
from modelscope import snapshot_downloadmodel_id = snapshot_download("LLM-Research/Meta-Llama-3.1-8B-Instruct")pipeline = transformers.pipeline("text-generation",model=model_id,model_kwargs={"torch_dtype": torch.bfloat16},device_map="auto",
)messages = [{"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},{"role": "user", "content": "Who are you?"},
]outputs = pipeline(messages,max_new_tokens=256,
)
print(outputs[0]["generated_text"][-1])

模型微调
我们介绍使用ms-swift对llama3_1-8b-instruct进行古文翻译腔微调,并对微调前后模型进行推理。swift是魔搭社区官方提供的LLM工具箱,支持300+大语言模型和50+多模态大模型的微调、推理、量化、评估和部署。
在开始微调之前,请确保您的环境已正确安装
# 安装ms-swift
git clone https://github.com/modelscope/swift.git
cd swift
pip install -e .[llm]
微调脚本:(如果出现OOM,请降低max_length)
# 实验环境: 3090/A10
# 显存占用: 24GB
CUDA_VISIBLE_DEVICES=0 \
swift sft \--model_type llama3_1-8b-instruct \--sft_type lora \--output_dir output \--dataset classical-chinese-translate \--num_train_epochs 1 \--max_length 2048 \--gradient_checkpointing true \--batch_size 1 \--gradient_accumulation_steps 16 \--warmup_ratio 0.1 \--eval_steps 100 \--save_steps 100 \--save_total_limit -1 \--logging_steps 10# 实验环境: 4 * 3090/A10
# 显存占用: 4 * 24GB
# DDP + ZeRO2
nproc_per_node=4NPROC_PER_NODE=$nproc_per_node \
CUDA_VISIBLE_DEVICES=0,1,2,3 \
swift sft \--model_type llama3_1-8b-instruct \--sft_type lora \--output_dir output \--dataset classical-chinese-translate \--num_train_epochs 1 \--max_length 2048 \--gradient_checkpointing true \--batch_size 1 \--gradient_accumulation_steps $(expr 16 / $nproc_per_node) \--warmup_ratio 0.1 \--eval_steps 100 \--save_steps 100 \--save_total_limit -1 \--logging_steps 10 \--deepspeed default-zero2
微调显存消耗:

微调过程的loss可视化:

微调后推理脚本如下,这里的ckpt_dir需要修改为训练生成的last checkpoint文件夹。我们可以使用vLLM对merge后的checkpoint进行推理加速。
pip install vllm -U # vllm>=0.5.3.post1# Experimental environment: A10, 3090, V100, ...
CUDA_VISIBLE_DEVICES=0 swift export \--ckpt_dir output/llama3_1-8b-instruct/vx-xxx/checkpoint-xxx \--merge_lora true# 使用vLLM进行推理加速
CUDA_VISIBLE_DEVICES=0 swift infer \--ckpt_dir output/llama3_1-8b-instruct/vx-xxx/checkpoint-xxx-merged \--infer_backend vllm --max_model_len 4096
微调后模型对验证集进行推理的示例:

模型部署
使用vLLM部署Llama3.1-70B-Instruct
部署Llama3.1-70B-Instruct需要至少2卡80GiB A100 GPU,部署方式如下:
服务端:
# 请确保已经安装了git-lfs
git lfs installGIT_LFS_SKIP_SMUDGE=1 git clone https://www.modelscope.cn/LLM-Research/Meta-Llama-3.1-70B-Instruct.git
cd Meta-Llama-3.1-70B-Instruct
git lfs pull# 实验环境:2 * A100
# <local_path>传入本地路径
CUDA_VISIBLE_DEVICES=0,1 vllm serve <local_path> \--dtype bfloat16 --served-model-name llama3_1-70b-instruct \--gpu_memory_utilization 0.96 --tensor_parallel_size 2 \--max_model_len 50000# or 实验环境:4 * A100
CUDA_VISIBLE_DEVICES=0,1,2,3 vllm serve <local_path> \--dtype bfloat16 --served-model-name llama3_1-70b-instruct \--tensor_parallel_size 4
客户端:
curl http://localhost:8000/v1/chat/completions \
-H "Content-Type: application/json" \
-d '{
"model": "llama3_1-70b-instruct",
"messages": [{"role": "user", "content": "晚上睡不着觉怎么办?"}],
"max_tokens": 1024,
"temperature": 0
}'
模型输出:
{"id":"chat-d1b12066eedf445bbee4257a8c3a1b30","object":"chat.completion","created":1721809149,"model":"llama3_1-70b-instruct","choices":[{"index":0,"message":{"role":"assistant","content":"答:如果你晚上睡不着觉,可以尝试以下方法:1. 保持卧室安静、黑暗和凉爽。2. 避免在睡前使用电子设备。3. 不要在睡前饮用含有咖啡因的饮料。4. 尝试放松技巧,如深呼吸、冥想或瑜伽。5. 如果问题持续,可以咨询医生或睡眠专家。","tool_calls":[]},"logprobs":null,"finish_reason":"stop","stop_reason":null}],"usage":{"prompt_tokens":19,"total_tokens":128,"completion_tokens":109}}
Llama3.1 工具调用服务实战
环境准备
Llama3.1部署依赖vllm 最新补丁版本 0.5.3.post1
# speed up if needed
# pip config set global.index-url https://mirrors.cloud.aliyuncs.com/pypi/simple
# pip config set install.trusted-host mirrors.cloud.aliyuncs.com
pip install https://github.com/vllm-project/vllm/releases/download/v0.5.3.post1/vllm-0.5.3.post1+cu118-cp310-cp310-manylinux1_x86_64.whl
依赖modelscope-agent项目下的modelscope-agent-server进行tool calling能力调用
git clone https://github.com/modelscope/modelscope-agent.git
cd modelscope-agent
服务调用
利用modelscope-agent-server的能力,允许用户在本地拉起一个支持openai SDK调用的chat/completions服务,并且赋予该模型tool calling 的能力。这样子可以让原本仅支持prompt调用的模型,可以通过modelscope的服务快速进行tool calling的调用。
服务curl调用
于此同时, 服务启动以后,可以通过以下方式curl 使用带有tool的信息调用服务。
curl -X POST 'http://localhost:31512/v1/chat/completions' \
-H 'Content-Type: application/json' \
-d '{"tools": [{"type": "function","function": {"name": "amap_weather","description": "amap weather tool","parameters": [{"name": "location","type": "string","description": "城市/区具体名称,如`北京市海淀区`请描述为`海淀区`","required": true}]}}],"tool_choice": "auto","model": "meta-llama/Meta-Llama-3.1-8B-Instruct","messages": [{"content": "海淀区天气", "role": "user"}]
}'
返回如下结果:
{"request_id": "chatcmpl_84a66af2-4021-4ae6-822d-8e3f42ca9f43","message": "","output": null,"id": "chatcmpl_84a66af2-4021-4ae6-822d-8e3f42ca9f43","choices": [{"index": 0,"message": {"role": "assistant","content": "工具调用\nAction: amap_weather\nAction Input: {\"location\": \"北京市\"}\n","tool_calls": [{"type": "function","function": {"name": "amap_weather","arguments": "{\"location\": \"北京市\"}"}}]},"finish_reason": "tool_calls"}],"created": 1721803228,"model": "meta-llama/Meta-Llama-3.1-8B-Instruct","system_fingerprint": "chatcmpl_84a66af2-4021-4ae6-822d-8e3f42ca9f43","object": "chat.completion","usage": {"prompt_tokens": -1,"completion_tokens": -1,"total_tokens": -1}
}
相关文章:
Meta 发布 Llama3.1,一站教你如何推理、微调、部署大模型
最近这一两周看到不少互联网公司都已经开始秋招提前批了。不同以往的是,当前职场环境已不再是那个双向奔赴时代了。求职者在变多,HC 在变少,岗位要求还更高了。 最近,我们又陆续整理了很多大厂的面试题,帮助一些球友解…...
XSSFWorkbook 和 SXSSFWorkbook 的区别
在现代办公环境中,处理 Excel 文件是一个常见的任务。Apache POI 是一个流行的 Java 库,能够读写 Microsoft Office 文档。对于处理 Excel 文件,Apache POI 提供了 XSSFWorkbook 和 SXSSFWorkbook 两个类。本文将详细介绍这两个类的特点和适用…...
会议主题:NICE Seminar|神经组合优化方法的大规模泛化研究(南方科技大学王振坤副研究员)
数据增强 获得更多解 TSP问题 最优解与序列无关,数据增强 ICML 2024 Position Rethinking Post-Hoc Search-Based Neural Approaches for Solving Large-Scale Traveling Salesman Problems...
昇思25天学习打卡营第22天|CycleGAN图像风格迁移互换
相关知识 CycleGAN 循环生成网络,实现了在没有配对示例的情况下将图像从源域X转换到目标域Y的方法,应用于域迁移,也就是图像风格迁移。上章介绍了可以完成图像翻译任务的Pix2Pix,但是Pix2Pix的数据必须是成对的。CycleGAN中只需…...
《Java初阶数据结构》----6.<优先级队列之PriorityQueue底层:堆>
前言 大家好,我目前在学习java。之前也学了一段时间,但是没有发布博客。时间过的真的很快。我会利用好这个暑假,来复习之前学过的内容,并整理好之前写过的博客进行发布。如果博客中有错误或者没有读懂的地方。热烈欢迎大家在评论区…...
Matrix Equation(高斯线性异或消元+bitset优化)
题目: 登录—专业IT笔试面试备考平台_牛客网 思路: 我们发现对于矩阵C可以一列一列求。 mod2,当这一行相乘1的个数为奇数时,z(i,j)为1,偶数为0,是异或消元。 对于b[i,j]*c[i,j],b[i,j]可以…...
【一图学技术】2.API测试9种方法图解
9种API测试方法 冒烟测试:冒烟测试是一种快速的表面级测试,用于验证软件的基本功能是否正常工作,以确定是否值得进行更详细的测试。功能测试:功能测试是验证软件是否符合预期功能要求的测试类型。它涉及对每个功能进行测试&#…...
力扣刷题----42. 接雨水
给定 n 个非负整数表示每个宽度为 1 的柱子的高度图,计算按此排列的柱子,下雨之后能接多少雨水。 输入:height [0,1,0,2,1,0,1,3,2,1,2,1] 输出:6 解释:上面是由数组 [0,1,0,2,1,0,1,3,2,1,2,1] 表示的高度图…...
【论文精读】 | 基于图表示的视频抑郁症识别的两阶段时间建模框架
文章目录 0、Description1、Introduction2、Related work2.1 Relationship between depression and facial behaviours2.2 Video-based automatic depression analysis2.3 Facial graph representation 3、The proposed two-stage approach3.1 Short-term depressive behaviour…...
采集PCM,将base64片段转换为wav音频文件
需求 开始录音——监听录音数据——结束录音 在监听录音数据过程中:客户端每100ms给前端传输一次数据(pcm数据转成base64),前端需要将base64片段解码、合并、添加WAV头、转成File、上传到 OSS之后将 url 给到服务端处理。 {num…...
eclipse ui bug
eclipse ui bug界面缺陷,可能项目过多,特别maven项目过多,下载,自动编译,加载更新界面异常 所有窗口死活Restore不回去了 1)尝试创建项目,还原界面,失败 2)关闭所有窗口&…...
前端获取blob文件格式的两种格式
第一种,后台传递给前台是base64格式的JSON数据 这时候前台拿到base64格式的数据可以通过内置的atob解码方法结合new Uint8Array和new Blob方法转换成blob类型的数据格式,然后可以使用blob数据格式进行操作,虽然base64转换成blob要经过很多步骤,但幸运的是这些步骤都是固定的,因…...
向日葵RCE复现(CNVD-2022-10270/CNVD-2022-03672)
一、环境 1.1 网上下载低版本的向日葵<2022 二、开始复现 2.1 在目标主机上打开旧版向日葵 2.2 首先打开nmap扫描向日葵主机端口 2.3 在浏览器中访问ip端口号cgi-bin/rpc?actionverify-haras (端口号:每一个都尝试,直到获取到session值…...
Postman中的负载均衡测试:确保API的高可用性
Postman中的负载均衡测试:确保API的高可用性 在微服务架构和分布式系统中,API的负载均衡是确保系统高可用性和可扩展性的关键技术之一。Postman作为一个多功能的API开发和测试平台,提供了多种工具来帮助测试人员模拟高负载情况下的API表现。…...
anaconda+tensorflow+keras+jupyter notebook搭建过程(CPU版)
AnacondaTensorFlowKeras 环境搭建教程...
LitCTF2024赛后web复现
复现要求:看wp做一遍,自己做一遍,第二天再做一遍。(一眼看出来就跳过) 目录 [LitCTF 2024]浏览器也能套娃? [LitCTF 2024]一个....池子? [LitCTF 2024]高亮主题(划掉)背景查看器 [LitCTF 2…...
Elasticsearch:跨集群使用 ES|QL
警告:ES|QL 的跨集群搜索目前处于技术预览阶段,可能会在未来版本中更改或删除。Elastic 将努力解决任何问题,但技术预览中的功能不受官方 GA 功能的支持 SLA 约束。 使用 ES|QL,你可以跨多个集群执行单个查询。 前提: …...
学习笔记4:docker和k8s选择简述
docker和 k8s 占用资源 使用客户体量Docker 和 Kubernetes(K8s)都是流行的容器化技术,但它们在资源管理和使用上有一些不同。以下是关于两者资源占用和使用客户体量的详细比较,基于具体数据和信息: Docker 资源占用…...
关于锁策略
在Java中对于多线程来说,锁是一种重要且必不可少的东西,那么我们将如何使用以及在什么时候使用什么样的锁呢?请各位往下看 悲观锁VS乐观锁 悲观锁: 在多线程环境中,冲突是非常常见的,所以在执行操作之前…...
昇思25天学习打卡营第3天|基础知识-数据集Dataset
目录 环境 环境 导包 数据集加载 数据集迭代 数据集常用操作 shuffle map batch 自定义数据集 可随机访问数据集 可迭代数据集 生成器 MindSpore提供基于Pipeline的数据引擎,通过数据集(Dataset)和数据变换(Transfor…...
【第二十一章 SDIO接口(SDIO)】
第二十一章 SDIO接口 目录 第二十一章 SDIO接口(SDIO) 1 SDIO 主要功能 2 SDIO 总线拓扑 3 SDIO 功能描述 3.1 SDIO 适配器 3.2 SDIOAHB 接口 4 卡功能描述 4.1 卡识别模式 4.2 卡复位 4.3 操作电压范围确认 4.4 卡识别过程 4.5 写数据块 4.6 读数据块 4.7 数据流…...
c++ 面试题(1)-----深度优先搜索(DFS)实现
操作系统:ubuntu22.04 IDE:Visual Studio Code 编程语言:C11 题目描述 地上有一个 m 行 n 列的方格,从坐标 [0,0] 起始。一个机器人可以从某一格移动到上下左右四个格子,但不能进入行坐标和列坐标的数位之和大于 k 的格子。 例…...
Java - Mysql数据类型对应
Mysql数据类型java数据类型备注整型INT/INTEGERint / java.lang.Integer–BIGINTlong/java.lang.Long–––浮点型FLOATfloat/java.lang.FloatDOUBLEdouble/java.lang.Double–DECIMAL/NUMERICjava.math.BigDecimal字符串型CHARjava.lang.String固定长度字符串VARCHARjava.lang…...
C++ 求圆面积的程序(Program to find area of a circle)
给定半径r,求圆的面积。圆的面积应精确到小数点后5位。 例子: 输入:r 5 输出:78.53982 解释:由于面积 PI * r * r 3.14159265358979323846 * 5 * 5 78.53982,因为我们只保留小数点后 5 位数字。 输…...
安卓基础(Java 和 Gradle 版本)
1. 设置项目的 JDK 版本 方法1:通过 Project Structure File → Project Structure... (或按 CtrlAltShiftS) 左侧选择 SDK Location 在 Gradle Settings 部分,设置 Gradle JDK 方法2:通过 Settings File → Settings... (或 CtrlAltS)…...
【前端异常】JavaScript错误处理:分析 Uncaught (in promise) error
在前端开发中,JavaScript 异常是不可避免的。随着现代前端应用越来越多地使用异步操作(如 Promise、async/await 等),开发者常常会遇到 Uncaught (in promise) error 错误。这个错误是由于未正确处理 Promise 的拒绝(r…...
解析两阶段提交与三阶段提交的核心差异及MySQL实现方案
引言 在分布式系统的事务处理中,如何保障跨节点数据操作的一致性始终是核心挑战。经典的两阶段提交协议(2PC)通过准备阶段与提交阶段的协调机制,以同步决策模式确保事务原子性。其改进版本三阶段提交协议(3PC…...
简约商务通用宣传年终总结12套PPT模版分享
IOS风格企业宣传PPT模版,年终工作总结PPT模版,简约精致扁平化商务通用动画PPT模版,素雅商务PPT模版 简约商务通用宣传年终总结12套PPT模版分享:商务通用年终总结类PPT模版https://pan.quark.cn/s/ece1e252d7df...
aurora与pcie的数据高速传输
设备:zynq7100; 开发环境:window; vivado版本:2021.1; 引言 之前在前面两章已经介绍了aurora读写DDR,xdma读写ddr实验。这次我们做一个大工程,pc通过pcie传输给fpga,fpga再通过aur…...
NineData数据库DevOps功能全面支持百度智能云向量数据库 VectorDB,助力企业 AI 应用高效落地
NineData 的数据库 DevOps 解决方案已完成对百度智能云向量数据库 VectorDB 的全链路适配,成为国内首批提供 VectorDB 原生操作能力的服务商。此次合作聚焦 AI 开发核心场景,通过标准化 SQL 工作台与细粒度权限管控两大能力,助力企业安全高效…...
