英特尔宣布针对对Llama 3.1进行优化 以提升所有产品的性能
日前Meta正式发布了Llama 3.1开源大模型,以其庞大的参数量和卓越性能,首次在多项基准测试中击败了GPT-4o等业界领先的闭源模型。允许开发者自由地进行微调、蒸馏,甚至在任何地方部署,这种开放性为AI技术的普及和创新提供了无限可能。

Llama 3.1支持128k的上下文长度和多语言能力,无论是在基本常识、可操作性还是数学、工具使用和多语言翻译方面,都展现出了行业领先的能力。
紧随其后,芯片巨头Intel迅速响应,宣布其AI产品组合已全面适配Llama 3.1,并针对Intel AI硬件进行了软件优化。


包括了数据中心、边缘计算以及客户端AI产品,确保用户能够在Intel平台上获得最佳的性能体验。
Intel的适配工作涵盖了PyTorch及Intel PyTorch扩展包、DeepSpeed、Hugging Face Optimum库和vLLM等,确保了从研发到部署的全流程支持。
目前,Intel AI PC及数据中心AI产品组合和解决方案已面向全新Llama 3.1模型实现优化,OPEA(企业AI开放平台)亦在基于Intel至强等产品上全面启用。
根据基准测试,在第五代Intel至强平台上以1K token输入和128 token输出运行80亿参数的Llama 3.1模型,可以达到每秒176 token的吞吐量,同时保持下一个token延迟小于50毫秒。
在配备了酷睿Ultra处理器和锐炫显卡的AI PC上,进行轻量级微调和应用定制比以往更加容易,并且AI工作负载可无缝部署于CPU、GPU以及NPU上,同时实现性能优化。

基于第五代Intel至强可扩展处理器的Llama 3.1推理延迟

在配备内置Intel锐炫显卡的Intel酷睿Ultra 7 165H AI PC上,Llama 3.1推理的下一个token延迟

在使用Intel锐炫A770 16GB限量版显卡的AI PC上,Llama 3.1推理的下一个token延迟

基于Llama 3.1的端到端RAG流水线,由Intel Gaudi 2加速器和至强处理器提供支持
相关文章:
英特尔宣布针对对Llama 3.1进行优化 以提升所有产品的性能
日前Meta正式发布了Llama 3.1开源大模型,以其庞大的参数量和卓越性能,首次在多项基准测试中击败了GPT-4o等业界领先的闭源模型。允许开发者自由地进行微调、蒸馏,甚至在任何地方部署,这种开放性为AI技术的普及和创新提供了无限可能…...
Python3网络爬虫开发实战(1)爬虫基础
一、URL 基础 URL也就是网络资源地址,其满足如下格式规范 scheme://[username:password]hostname[:port][/path][;parameters][?query][#fragment] scheme:协议,常用的协议有 Http,https,ftp等等;usern…...
Redis的五种数据类型与命令
目录 引言 一 Redis的特性 二 Redis的安装 三 Redis的优点 四 Redis的五种数据类型与命令 五 Redis的配置文件 引言 Redis是什么? Remote Dictionary Service(远程字典服务器) Redis 是一个开源的(BSD许可)的,C语言编写的,高性能的数…...
RocketMQ的详细讲解(四种mq的对比(activeMq、rabbitmq、rocketmq、kafka))
20240729 RocketMQ1 mq的三大作用 异步、削峰限流、解耦合2. 四种mq的对比(activeMq、rabbitmq、rocketmq、kafka)3 rocketmq特点1. 平台无关2. 能提供什么样的功能 4 rocketMq4.1 broker中的标题,来约束读和写4.2 rocketmq的结构4.3 读和写的…...
除了GPT,还有哪些好用的AI工具?
最强AI视频生成:小说文案智能分镜智能识别角色和场景批量Ai绘图自动配音添加音乐一键合成视频百万播放量https://aitools.jurilu.com/ 多得很,这20个免费的国产AI工具,打工人必备,除了比chatGPT好用,甚至还可以用来变现…...
04 | 深入浅出索引(上)
此系列文章为极客时间课程《MySQL 实战 45 讲》的学习笔记! 索引的常见模型 可以提供查询效率的数据结构有很多,常见的有三种:哈希表、有序数组、搜索数。 哈希表是一种以 key-value 形式存储的数据结构。输入一个 key,通过固定…...
Linux的yum源安装MySQL5.7
linux的yum源安装MySQL5.7 一、MySQL 1、简介 MySQL 是一种流行的关系型数据库管理系统(RDBMS),由瑞典公司 MySQL AB 开发,后来被 Oracle Corporation 收购。它是一个开源软件,提供了高效、稳定和可靠的数据管理解决…...
基于深度学习的音频自监督学习
基于深度学习的音频自监督学习(Self-Supervised Learning, SSL)是一种利用未标注的音频数据,通过设计自监督任务进行特征学习的方法。这种方法在需要大量标注数据的音频处理任务(如语音识别、情感分析等)中,…...
用uniapp 及socket.io做一个简单聊天app1
####相关的表结构,用的是mysql 用户表(Users) 存储用户的基本信息。 CREATE TABLE Users (id INT AUTO_INCREMENT PRIMARY KEY,username VARCHAR(50) NOT NULL UNIQUE,password VARCHAR(100) NOT NULL,email VARCHAR(100) UNIQUE,created_a…...
在Postman中引用JS库
前言 在做接口测试时,出于安全因素,请求参数需要做加密或者加上签名才能正常请求,例如:根据填写的请求参数进行hash计算进行签名。postman作为主流的接口调试工具也是支持请求预处理的,即在请求前使用JavaScript脚本对…...
学习笔记-系统框图简化求传递函数公式例题
简化系统结构图求系统传递函数例题 基础知识回顾 第四讲 控制系统的方框图 (zhihu.com) 「自控原理」2.3 方框图的绘制及化简_方框图化简-CSDN博客 自动控制原理笔记-结构图及其等效变换_结构图等效变换-CSDN博客 例子一 「自控原理」2.3 方框图的绘制及化简_方框图化简-CS…...
postgrsql——事务概述
事务概述 事务的特性 原子性(Atomicity): 事务被视为一个整体,其中的操作要么全部执行成功,要么全部不执行,即不存在部分执行的情况。这确保了事务的完整性和一致性。一致性(Consistency&…...
1.Spring Boot 简介(Spring MVC+Mybatis-plus)
文章目录 一,Spring Boot 简介二,搭建springboot项目并整合mybatis-plus框架1.pom导依赖2.添加启动项3.配置文件.yml 三,springboot集成 Spring MVC1.springmvc定义2.应用注解 一,Spring Boot 简介 SpringBoot是Spring的子工程(或…...
《计算机网络》(学习笔记)
目录 一、计算机网络体系结构 1.1 计算机网络概述 1.1.1 计算机网络的概念 1.1.2 计算机网络的组成 1.1.3 计算机网络的功能 1.1.4 电流交换、报文交换和分组交换 1.1.5 计算机网络的分类 1.1.6 计算机网络的性能指标 1.2 计算机网络体系结构与参考模型 1.2.1 计算机…...
指针函数和函数指针
函数名在表达式中应该如何被解读?答:函数名可以在表达式中被解读成“指向该函数的指针”。 函数指针和指针函数有什么区别?答:函数指针是一个指向函数的指针;指针函数是一个返回指针变量的函数。 一个函数能否有时候…...
Elasticsearch跨集群搜索
Elasticsearch(简称ES)是一种基于Lucene的搜索引擎,以其高性能、可扩展性和实时搜索能力而广受欢迎。在大型分布式系统中,跨集群搜索成为了一个重要的需求,它允许用户从多个Elasticsearch集群中联合查询数据࿰…...
基于FPGA的数字信号处理(19)--行波进位加法器
1、10进制加法是如何实现的? 10进制加法是大家在小学就学过的内容,不过在这里我还是帮大家回忆一下。考虑2个2位数的10进制加法,例如:15 28 43,它的运算过程如下: 个位两数相加,结果为5 8 1…...
树莓派下,centos7操作系统, TensorFlow java版实现植物分类功能
在树莓派上运行CentOS 7,并使用TensorFlow Java版本实现植物分类功能可以通过以下步骤实现。以下是详细的指导: 一、安装和设置环境 1. 更新系统并安装基本工具 确保你的CentOS 7系统是最新的,并安装必要的工具: sudo yum update -y sudo yum install -y wget unzip gi…...
开源一个react路由缓存库
Github仓库 背景 产品希望可以像浏览器那样每打开一个路由,会多一个tab,用户可以切换tab访问之前加载过的页面,且不会重新加载。真就产品一句话…… Github上有轮子了吗 Github上开箱即用的轮子是基于react-router-dom V5实现的ÿ…...
go-kratos 学习笔记(7) 服务发现服务间通信grpc调用
服务发现 Registry 接口分为两个,Registrar 为实例注册和反注册,Discovery 为服务实例列表获取 创建一个 Discoverer 服务间的通信使用的grpc,放到data层,实现的是从uses服务调用orders服务 app/users/internal/data.go 加入 New…...
IDEA运行Tomcat出现乱码问题解决汇总
最近正值期末周,有很多同学在写期末Java web作业时,运行tomcat出现乱码问题,经过多次解决与研究,我做了如下整理: 原因: IDEA本身编码与tomcat的编码与Windows编码不同导致,Windows 系统控制台…...
微信小程序之bind和catch
这两个呢,都是绑定事件用的,具体使用有些小区别。 官方文档: 事件冒泡处理不同 bind:绑定的事件会向上冒泡,即触发当前组件的事件后,还会继续触发父组件的相同事件。例如,有一个子视图绑定了b…...
ubuntu搭建nfs服务centos挂载访问
在Ubuntu上设置NFS服务器 在Ubuntu上,你可以使用apt包管理器来安装NFS服务器。打开终端并运行: sudo apt update sudo apt install nfs-kernel-server创建共享目录 创建一个目录用于共享,例如/shared: sudo mkdir /shared sud…...
Golang 面试经典题:map 的 key 可以是什么类型?哪些不可以?
Golang 面试经典题:map 的 key 可以是什么类型?哪些不可以? 在 Golang 的面试中,map 类型的使用是一个常见的考点,其中对 key 类型的合法性 是一道常被提及的基础却很容易被忽视的问题。本文将带你深入理解 Golang 中…...
MongoDB学习和应用(高效的非关系型数据库)
一丶 MongoDB简介 对于社交类软件的功能,我们需要对它的功能特点进行分析: 数据量会随着用户数增大而增大读多写少价值较低非好友看不到其动态信息地理位置的查询… 针对以上特点进行分析各大存储工具: mysql:关系型数据库&am…...
DAY 47
三、通道注意力 3.1 通道注意力的定义 # 新增:通道注意力模块(SE模块) class ChannelAttention(nn.Module):"""通道注意力模块(Squeeze-and-Excitation)"""def __init__(self, in_channels, reduction_rat…...
让AI看见世界:MCP协议与服务器的工作原理
让AI看见世界:MCP协议与服务器的工作原理 MCP(Model Context Protocol)是一种创新的通信协议,旨在让大型语言模型能够安全、高效地与外部资源进行交互。在AI技术快速发展的今天,MCP正成为连接AI与现实世界的重要桥梁。…...
RSS 2025|从说明书学习复杂机器人操作任务:NUS邵林团队提出全新机器人装配技能学习框架Manual2Skill
视觉语言模型(Vision-Language Models, VLMs),为真实环境中的机器人操作任务提供了极具潜力的解决方案。 尽管 VLMs 取得了显著进展,机器人仍难以胜任复杂的长时程任务(如家具装配),主要受限于人…...
系统掌握PyTorch:图解张量、Autograd、DataLoader、nn.Module与实战模型
本文较长,建议点赞收藏,以免遗失。更多AI大模型应用开发学习视频及资料,尽在聚客AI学院。 本文通过代码驱动的方式,系统讲解PyTorch核心概念和实战技巧,涵盖张量操作、自动微分、数据加载、模型构建和训练全流程&#…...
面试高频问题
文章目录 🚀 消息队列核心技术揭秘:从入门到秒杀面试官1️⃣ Kafka为何能"吞云吐雾"?性能背后的秘密1.1 顺序写入与零拷贝:性能的双引擎1.2 分区并行:数据的"八车道高速公路"1.3 页缓存与批量处理…...
