当前位置: 首页 > news >正文

动态规划-基础(斐波那契数、爬楼梯、使用最小花费爬楼梯、不同路径、不同路径II、整数拆分、不同的二叉搜索树)

动态规划,英文:Dynamic Programming,简称DP,如果某一问题有很多重叠子问题,使用动态规划是最有效的。所以动态规划中每一个状态一定是由上一个状态推导出来的。
动态规划问题,五步走:
状态定义:确定 dp 数组,下标及其含义
状态转移:
初始化:
遍历顺序:
返回值:
动态规划代码有问题分析
举例推导状态转移公式
打印 dp 数组日志

1.斐波那契数

题目链接:509. 斐波那契数 - 力扣(LeetCode)

斐波那契数 (通常用 F(n) 表示)形成的序列称为 斐波那契数列 。该数列由 0 和 1 开始,后面的每一项数字都是前面两项数字的和。也就是:

F(0) = 0,F(1) = 1

F(n) = F(n - 1) + F(n - 2),其中 n > 1

给定 n ,请计算 F(n) 。

示例 1:

输入:n = 2
输出:1
解释:F(2) = F(1) + F(0) = 1 + 0 = 1

示例 2:

输入:n = 3
输出:2
解释:F(3) = F(2) + F(1) = 1 + 1 = 2

示例 3:

输入:n = 4
输出:3
解释:F(4) = F(3) + F(2) = 2 + 1 = 3

提示:

0 <= n <= 30

代码:

    /**1. 状态定义:dp[i]为斐波那契数列的自变量i,dp[i] = F(i)2. 状态转移:dp[i] = dp[i-1] + dp[i-2]3. 初始化:dp[0] = 0, dp[1] = 14. 遍历顺序:正序5. 返回形式:dp[n]*/public int fib(int n) {if(n == 0 || n == 1) {return n;}int a = 0, b = 1,sum = 0;for(int i = 2; i <= n; i++) {sum = a + b;a = b;b = sum;}return sum;}

2. 爬楼梯

题目链接:70. 爬楼梯 - 力扣(LeetCode)

假设你正在爬楼梯。需要 n 阶你才能到达楼顶。

每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?

示例 1:

输入:n = 2
输出:2
解释:有两种方法可以爬到楼顶。
1 阶 + 1 阶
2 阶

示例 2:

输入:n = 3
输出:3
解释:有三种方法可以爬到楼顶。
1 阶 + 1 阶 + 1 阶
1 阶 + 2 阶
2 阶 + 1 阶

提示:

1 <= n <= 45

思路:

代码:

    /**1. 状态定义:到达第 i 个台阶,有 dp[i] 中方法2. 状态转移:dp[i] = dp[i-1] + dp[i-2]3. 初始化:dp[1] = 1 dp[2] = 2  注意题中要求 n != 04. 遍历顺序:从前往后5. 返回值:返回 dp[n]*/public int climbStairs(int n) {if(n < 2) return n;int[] dp = new int[n+1];dp[1] = 1;dp[2] = 2;for(int i = 3; i <= n; i++) {dp[i] = dp[i-2] + dp[i-1];}return dp[n];}

3. 使用最小花费爬楼梯

题目链接:使用最小花费爬楼梯

给你一个整数数组 cost ,其中 cost[i] 是从楼梯第 i 个台阶向上爬需要支付的费用。一旦你支付此费用,即可选择向上爬一个或者两个台阶。

你可以选择从下标为 0 或下标为 1 的台阶开始爬楼梯。

请你计算并返回达到楼梯顶部的最低花费。

示例 1:

输入:cost = [10,15,20]
输出:15
解释:你将从下标为 1 的台阶开始。
支付 15 ,向上爬两个台阶,到达楼梯顶部。
总花费为 15 。

示例 2:

输入:cost = [1,100,1,1,1,100,1,1,100,1]
输出:6
解释:你将从下标为 0 的台阶开始。
支付 1 ,向上爬两个台阶,到达下标为 2 的台阶。
支付 1 ,向上爬两个台阶,到达下标为 4 的台阶。
支付 1 ,向上爬两个台阶,到达下标为 6 的台阶。
支付 1 ,向上爬一个台阶,到达下标为 7 的台阶。
支付 1 ,向上爬两个台阶,到达下标为 9 的台阶。
支付 1 ,向上爬一个台阶,到达楼梯顶部。
总花费为 6 。

提示:

2 <= cost.length <= 1000

0 <= cost[i] <= 999

思路:

代码:

    /**1. 状态定义:到达 i 位置最小花费 dp[i]2. 状态转移:dp[i] = min(dp[i-1]+cost[i-1], dp[i-2]+cost[i-2])3. 初始化:dp[0] = 0, dp[1] = 0 前两个台阶是直接到达的,不花费4. 遍历顺序:从前往后5. 返回值:dp[cost.length]*/public int minCostClimbingStairs(int[] cost) {int len = cost.length;int[] dp = new int[len + 1];dp[0] = 0;dp[1] = 0;for(int i = 2; i <= len; i++) {dp[i] = Math.min(dp[i-1]+cost[i-1],dp[i-2]+cost[i-2]);}return dp[len];}

4. 不同路径

题目链接:62. 不同路径 - 力扣(LeetCode)

一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。

机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish” )。

问总共有多少条不同的路径?

示例 1:

输入:m = 3, n = 7
输出:28

示例 2:

输入:m = 3, n = 2
输出:3
解释:
从左上角开始,总共有 3 条路径可以到达右下角。
向右 -> 向下 -> 向下
向下 -> 向下 -> 向右
向下 -> 向右 -> 向下

示例 3:

输入:m = 7, n = 3
输出:28

示例 4:

输入:m = 3, n = 3
输出:6

提示:

1 <= m, n <= 100

题目数据保证答案小于等于 2 * 109

思路:

代码:

/**1. 状态定义:dp[i][j] 表示从 (0,0) 到 ()2. 状态转移:dp[i][j] = dp[i-1][j] + dp[i][j-1]3. 初始化: 行:dp[0][j] = 1, 列:dp[i][0] = 14. 遍历顺序:从左到右,从上到下5. 返回值:dp[m][n]*/
public int uniquePaths(int m, int n) {int[][] dp = new int[m][n];// 初始化for(int i = 0; i < m; i++) {dp[i][0] = 1;}for(int j = 0; j < n; j++) {dp[0][j] = 1;}// 遍历打印for(int i = 1; i < m; i++) {for(int j = 1; j < n; j++) {dp[i][j] = dp[i-1][j] + dp[i][j-1];}}return dp[m-1][n-1];
}

5. 不同路径 II

题目链接:63. 不同路径 II - 力扣(LeetCode)

一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。

机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish”)。

现在考虑网格中有障碍物。那么从左上角到右下角将会有多少条不同的路径?

网格中的障碍物和空位置分别用 1 和 0 来表示。

示例 1:

输入:obstacleGrid = [[0,0,0],[0,1,0],[0,0,0]]
输出:2
解释:3x3 网格的正中间有一个障碍物。
从左上角到右下角一共有 2 条不同的路径:
向右 -> 向右 -> 向下 -> 向下
向下 -> 向下 -> 向右 -> 向右

示例 2:

输入:obstacleGrid = [[0,1],[0,0]]
输出:1

提示:

  • m == obstacleGrid.length

  • n == obstacleGrid[i].length

  • 1 <= m, n <= 100

  • obstacleGrid[i][j] 为 0 或 1

思路:

代码:

    /**1. 状态定义: dp[i][j] 表示到达 (i,j) 位置有多少种走法2. 状态转移:条件:obs[i][j] = 0 时才有这个方程,表示这个位置没有障碍物dp[i][j] = dp[i-1][j] + dp[i][j-1]   3. 初始化:条件:当 obs[i][0] = 0 时,才有 dp[i][0] = 1当 obs[0][j] = 0 时,才有 dp[0][j] = 1  4. 遍历顺序:从上到下,从左到右5. 返回值:当初始位置或结束位置 obs 为 1 时,表示有障碍,直接返回 0,正常情况下返回 dp[m][n]*/public int uniquePathsWithObstacles(int[][] obstacleGrid) {int m = obstacleGrid.length; // 行int n = obstacleGrid[0].length; // 列if(obstacleGrid[0][0] == 1 || obstacleGrid[m-1][n-1] == 1) {return 0;}int[][] dp = new int[m][n];// 初始化for(int i = 0; i < m && obstacleGrid[i][0] == 0; i++) {dp[i][0] = 1;}for(int j = 0; j < n && obstacleGrid[0][j] == 0; j++) {dp[0][j] = 1;}for(int i = 1; i < m; i++) {for(int j = 1; j < n; j++) {if(obstacleGrid[i][j] == 0) {dp[i][j] = dp[i-1][j] + dp[i][j-1];}}}return dp[m-1][n-1];}

6. 整数拆分

题目链接:343. 整数拆分 - 力扣(LeetCode)

给定一个正整数 n ,将其拆分为 k 个 正整数 的和( k >= 2 ),并使这些整数的乘积最大化。

返回 你可以获得的最大乘积 。

示例 1:

输入: n = 2
输出: 1
解释: 2 = 1 + 1, 1 × 1 = 1。

示例 2:

输入: n = 10
输出: 36
解释: 10 = 3 + 3 + 4, 3 × 3 × 4 = 36。

提示:

2 <= n <= 58

思路:

代码:

    /**1. 状态定义:对 i 进行拆分,得到最大的积为 dp[i]2. 状态转移:dp[i] = Math.max(dp[i], Math.max(j*(i-j), j * dp[i-j]));3. 初始化:dp[0] = 0,dp[1] = 0,dp[2] = 24. 遍历顺序:从前向后5. 返回值:dp[n]*/public int integerBreak(int n) {int[] dp = new int[n+1];dp[2] = 1;for(int i = 3; i <= n; i++) {for(int j = 1; j <= i-j; j++) {dp[i] = Math.max(dp[i],Math.max(j*(i-j), j*dp[i-j]));}}return dp[n];}

7. 不同的二叉搜索树

题目链接:96. 不同的二叉搜索树 - 力扣(LeetCode)

给你一个整数 n ,求恰由 n 个节点组成且节点值从 1 到 n 互不相同的 二叉搜索树 有多少种?返回满足题意的二叉搜索树的种数。

示例 1:

输入:n = 3

输出:5

示例 2:

输入:n = 1

输出:1

提示:

1 <= n <= 19

思路:

代码:

/**1. 状态定义:dp[i] 表示输入 i,有 dp[i] 种不同的二叉搜索树2. 状态转移:dp[i] += dp[j-1]*dp[i-j]3. 初始化:dp[0] = 1, dp[1] = 14. 遍历顺序:从小到大5. 返回值:dp[n]
*/
public int numTrees(int n) {int[] dp = new int[n+1];dp[0] = 1;dp[1] = 1;for(int i = 2; i <= n; i++) {for(int j = 1; j <= i; j++) {dp[i] += dp[j-1]*dp[i-j];}}return dp[n];
}2. 背包问题

相关文章:

动态规划-基础(斐波那契数、爬楼梯、使用最小花费爬楼梯、不同路径、不同路径II、整数拆分、不同的二叉搜索树)

动态规划&#xff0c;英文&#xff1a;Dynamic Programming&#xff0c;简称DP&#xff0c;如果某一问题有很多重叠子问题&#xff0c;使用动态规划是最有效的。所以动态规划中每一个状态一定是由上一个状态推导出来的。动态规划问题&#xff0c;五步走&#xff1a;状态定义&am…...

深入理解WebSocket协议

“ 一直以来对WebSocket仅停留在使用阶段&#xff0c;也没有深入理解其背后的原理。当看到 x x x was not upgraded to websocket&#xff0c;我是彻底蒙了&#xff0c;等我镇定下来&#xff0c;打开百度输入这行报错信息&#xff0c;随即看到的就是大家说的跨域&#xff0c;或…...

Vector的扩容机制

到需要扩容的时候&#xff0c;Vector会根据需要的大小&#xff0c;创建一个新数组&#xff0c;然后把旧数组的元素复制进新数组。 我们可以看到&#xff0c;扩容后&#xff0c;其实是一个新数组&#xff0c;内部元素的地址已经改变了。所以扩容之后&#xff0c;原先的迭代器会…...

22讲MySQL有哪些“饮鸩止渴”提高性能的方法

短连接风暴 是指数据库有很多链接之后只执行了几个语句就断开的客户端&#xff0c;然后我们知道数据库客户端和数据库每次连接不仅需要tcp的三次握手&#xff0c;而且还有mysql的鉴权操作都要占用很多服务器的资源。话虽如此但是如果连接的不多的话其实这点资源无所谓的。 但是…...

10.0自定义SystemUI下拉状态栏和通知栏视图(六)之监听系统通知

1.前言 在进行rom产品定制化开发中,在10.0中针对systemui下拉状态栏和通知栏的定制UI的工作开发中,原生系统的下拉状态栏和通知栏的视图UI在产品开发中会不太满足功能, 所以根据产品需要来自定义SystemUI的下拉状态栏和通知栏功能,首选实现的就是下拉通知栏左滑删除通知的部…...

怎样在外网登录访问CRM管理系统?

一、什么是CRM管理系统&#xff1f; Customer Relationship Management&#xff0c;简称CRM&#xff0c;指客户关系管理&#xff0c;是企业利用信息互联网技术&#xff0c;协调企业、顾客和服务上的交互&#xff0c;提升管理服务。为了企业信息安全以及使用方便&#xff0c;企…...

Activity工作流(三):Service服务

3. Service服务 所有的Service都通过流程引擎获得。 3.1 RepositoryService 仓库服务是存储相关的服务&#xff0c;一般用来部署流程文件&#xff0c;获取流程文件&#xff08;bpmn和图片&#xff09;&#xff0c;查询流程定义信息等操作&#xff0c;是引擎中的一个重要的服务。…...

算法--最长回文子串--java--python

这个算法题里面总是有 暴力解法 把所有字串都拿出来判断一下 这里有小小的优化&#xff1a; 就是当判断的字串小于等于我们自己求得的最长回文子串的长度&#xff0c;那么我们就不需要在进行对这个的判断这里的begin&#xff0c;还可以用来取得最小回文子串是什么 java // 暴…...

ElasticSearch-第二天

目录 文档批量操作 批量获取文档数据 批量操作文档数据 DSL语言高级查询 DSL概述 无查询条件 叶子条件查询 模糊匹配 match的复杂用法 精确匹配 组合条件查询(多条件查询) 连接查询(多文档合并查询) 查询DSL和过滤DSL 区别 query DSL filter DSL Query方式查…...

【AI大比拼】文心一言 VS ChatGPT-4

摘要&#xff1a;本文将对比分析两款知名的 AI 对话引擎&#xff1a;文心一言和 OpenAI 的 ChatGPT&#xff0c;通过实际案例让大家对这两款对话引擎有更深入的了解&#xff0c;以便大家选择合适的 AI 对话引擎。 亲爱的 CSDN 朋友们&#xff0c;大家好&#xff01;近年来&…...

美团笔试-3.18

1、捕获敌人 小美在玩一项游戏。该游戏的目标是尽可能抓获敌人。 敌人的位置将被一个二维坐标 (x, y) 所描述。 小美有一个全屏技能&#xff0c;该技能能一次性将若干敌人一次性捕获。 捕获的敌人之间的横坐标的最大差值不能大于A&#xff0c;纵坐标的最大差值不能大于B。 现在…...

【12】SCI易中期刊推荐——计算机信息系统(中科院4区)

🚀🚀🚀NEW!!!SCI易中期刊推荐栏目来啦 ~ 📚🍀 SCI即《科学引文索引》(Science Citation Index, SCI),是1961年由美国科学信息研究所(Institute for Scientific Information, ISI)创办的文献检索工具,创始人是美国著名情报专家尤金加菲尔德(Eugene Garfield…...

好不容易约来了一位程序员来面试,结果人家不做笔试题

感觉以后还是不要出面试题这环节好了。好不容易约来了一位程序员来面试。刚递给他一份笔试题&#xff0c;他一看到要做笔试题&#xff0c;说不做笔试题&#xff0c;有问题面谈就好了&#xff0c;搞得我有点尴尬&#xff0c;这位应聘者有3年多工作经验。关于程序员岗位&#xff…...

这几个过时Java技术不要再学了

Java 已经发展了近20年&#xff0c;极其丰富的周边框架打造了一个繁荣稳固的生态圈。 Java现在不仅仅是一门语言&#xff0c;而且还是一整个生态体系&#xff0c;实在是太庞大了&#xff0c;从诞生到现在&#xff0c;有无数的技术在不断的推出&#xff0c;也有很多技术在不断的…...

EEPROM芯片(24c02)使用详解(I2C通信时序分析、操作源码分析、原理图分析)

1、前言 (1)本文主要是通过24c02芯片来讲解I2C接口的EEPROM操作方法&#xff0c;包含底层时序和读写的代码&#xff1b; (2)大部分代码是EEPROM芯片通用的&#xff0c;但是其中关于某些时间的要求&#xff0c;是和具体芯片相关的&#xff0c;和主控芯片和外设芯片都有关系&…...

Django4.0新特性-主要变化

Django 4.0于2021年12月正式发布&#xff0c;标志着Django 4.X时代的来临。参考Django 4.0 release notes | Django documentation | Django Python 兼容性 Django 4.0 将支持 Python 3.8、3.9 与 3.10。强烈推荐并且仅官方支持每个系列的最新版本。 Django 3.2.x 系列是最后…...

MySQL高级面试题整理

1. 执行流程 mysql客户端先与服务器建立连接Sql语句通过解析器形成解析树再通过预处理器形成新解析树&#xff0c;检查解析树是否合法通过查询优化器将其转换成执行计划&#xff0c;优化器找到最适合的执行计划执行器执行sql 2. MYISAM和InNoDB的区别 MYISAM&#xff1a;不支…...

【Java】面向对象三大基本特征

【Java】面向对象三大基本特征 1.封装 On Java 8:研发程序员开发一个工具类&#xff0c;该工具类仅向应用程序员公开必要的内容&#xff0c;并隐藏内部实现的细节。这样可以有效地避免该工具类被错误的使用和更改&#xff0c;从而减少程序出错的可能。彼此职责划分清晰&#x…...

蓝桥杯C++组怒刷50道真题(填空题)

&#x1f33c;深夜伤感网抑云 - 南辰Music/御小兮 - 单曲 - 网易云音乐 &#x1f33c;多年后再见你 - 乔洋/周林枫 - 单曲 - 网易云音乐 18~22年真题&#xff0c;50题才停更&#xff0c;课业繁忙&#xff0c;有空就更&#xff0c;2023/3/18/23:01写下 目录 &#x1f44a;填…...

Shell自动化管理 for ORACLE DBA

1.自动收集每天早上9点到晚上8点之间的AWR报告。 auto_awr.sh #!/bin/bash# Set variables ORACLE_HOME/u01/app/oracle/product/12.1.0/dbhome_1 ORACLE_SIDorcl AWR_DIR/home/oracle/AWR# Set date format for file naming DATE$(date %Y%m%d%H%M%S)# Check current time - …...

阿里云ACP云计算备考笔记 (5)——弹性伸缩

目录 第一章 概述 第二章 弹性伸缩简介 1、弹性伸缩 2、垂直伸缩 3、优势 4、应用场景 ① 无规律的业务量波动 ② 有规律的业务量波动 ③ 无明显业务量波动 ④ 混合型业务 ⑤ 消息通知 ⑥ 生命周期挂钩 ⑦ 自定义方式 ⑧ 滚的升级 5、使用限制 第三章 主要定义 …...

多模态商品数据接口:融合图像、语音与文字的下一代商品详情体验

一、多模态商品数据接口的技术架构 &#xff08;一&#xff09;多模态数据融合引擎 跨模态语义对齐 通过Transformer架构实现图像、语音、文字的语义关联。例如&#xff0c;当用户上传一张“蓝色连衣裙”的图片时&#xff0c;接口可自动提取图像中的颜色&#xff08;RGB值&…...

深入解析C++中的extern关键字:跨文件共享变量与函数的终极指南

&#x1f680; C extern 关键字深度解析&#xff1a;跨文件编程的终极指南 &#x1f4c5; 更新时间&#xff1a;2025年6月5日 &#x1f3f7;️ 标签&#xff1a;C | extern关键字 | 多文件编程 | 链接与声明 | 现代C 文章目录 前言&#x1f525;一、extern 是什么&#xff1f;&…...

selenium学习实战【Python爬虫】

selenium学习实战【Python爬虫】 文章目录 selenium学习实战【Python爬虫】一、声明二、学习目标三、安装依赖3.1 安装selenium库3.2 安装浏览器驱动3.2.1 查看Edge版本3.2.2 驱动安装 四、代码讲解4.1 配置浏览器4.2 加载更多4.3 寻找内容4.4 完整代码 五、报告文件爬取5.1 提…...

Web 架构之 CDN 加速原理与落地实践

文章目录 一、思维导图二、正文内容&#xff08;一&#xff09;CDN 基础概念1. 定义2. 组成部分 &#xff08;二&#xff09;CDN 加速原理1. 请求路由2. 内容缓存3. 内容更新 &#xff08;三&#xff09;CDN 落地实践1. 选择 CDN 服务商2. 配置 CDN3. 集成到 Web 架构 &#xf…...

力扣-35.搜索插入位置

题目描述 给定一个排序数组和一个目标值&#xff0c;在数组中找到目标值&#xff0c;并返回其索引。如果目标值不存在于数组中&#xff0c;返回它将会被按顺序插入的位置。 请必须使用时间复杂度为 O(log n) 的算法。 class Solution {public int searchInsert(int[] nums, …...

让回归模型不再被异常值“带跑偏“,MSE和Cauchy损失函数在噪声数据环境下的实战对比

在机器学习的回归分析中&#xff0c;损失函数的选择对模型性能具有决定性影响。均方误差&#xff08;MSE&#xff09;作为经典的损失函数&#xff0c;在处理干净数据时表现优异&#xff0c;但在面对包含异常值的噪声数据时&#xff0c;其对大误差的二次惩罚机制往往导致模型参数…...

Qt 事件处理中 return 的深入解析

Qt 事件处理中 return 的深入解析 在 Qt 事件处理中&#xff0c;return 语句的使用是另一个关键概念&#xff0c;它与 event->accept()/event->ignore() 密切相关但作用不同。让我们详细分析一下它们之间的关系和工作原理。 核心区别&#xff1a;不同层级的事件处理 方…...

MySQL 主从同步异常处理

阅读原文&#xff1a;https://www.xiaozaoshu.top/articles/mysql-m-s-update-pk MySQL 做双主&#xff0c;遇到的这个错误&#xff1a; Could not execute Update_rows event on table ... Error_code: 1032是 MySQL 主从复制时的经典错误之一&#xff0c;通常表示&#xff…...

区块链技术概述

区块链技术是一种去中心化、分布式账本技术&#xff0c;通过密码学、共识机制和智能合约等核心组件&#xff0c;实现数据不可篡改、透明可追溯的系统。 一、核心技术 1. 去中心化 特点&#xff1a;数据存储在网络中的多个节点&#xff08;计算机&#xff09;&#xff0c;而非…...