当前位置: 首页 > news >正文

Halcon深度学习分类模型

1.Halcon20之后深度学习支持CPU训练模型,没有money买显卡的小伙伴有福了。但是缺点也很明显,就是训练速度超级慢,推理效果也没有GPU好,不过学习用足够。
2.分类模型是Halcon深度学习最简单的模型,可以用在物品分类,缺陷检测等项目。
3.图像预处理和训练代码
*分类网络
dev_update_off ()
dev_close_window ()
WindowWidth := 800
WindowHeight := 600
dev_open_window_fit_size (0, 0, WindowWidth, WindowHeight, -1, -1, WindowHandle)
set_display_font (WindowHandle, 16, ‘mono’, ‘true’, ‘false’)
*训练原图路径
RawImageBaseFolder :=‘D:/训练图/’+ [‘U’,‘SR’,‘MR’,‘BR’,‘C’,‘D’,‘NG’]
*预处理数据存储路径
ExampleDataDir := ‘D:/classify_pill_defects_data’

  • Dataset directory basename for any outputs written by preprocess_dl_dataset.
    DataDirectoryBaseName := ExampleDataDir + ‘/dldataset_pill’


  • ** Set parameters ***

  • LabelSource for reading in the dataset.
    LabelSource := ‘last_folder’
  • Percentages for splitting the dataset.
    TrainingPercent := 70
    ValidationPercent := 15
  • Image dimensions the images are rescaled to during preprocessing.
    ImageWidth := 300
    ImageHeight := 300
    ImageNumChannels := 3
  • Further parameters for image preprocessing.
    NormalizationType := ‘none’
    DomainHandling := ‘full_domain’
  • In order to get a reproducible split we set a random seed.
  • This means that re-running the script results in the same split of DLDataset.
    SeedRand := 42

  • ** Read the labeled data and split it into train, validation and test ***

  • Set the random seed.
    set_system (‘seed_rand’, SeedRand)
  • Read the dataset with the procedure read_dl_dataset_classification.
  • Alternatively, you can read a DLDataset dictionary
  • as created by e.g., the MVTec Deep Learning Tool using read_dict().
    read_dl_dataset_classification (RawImageBaseFolder, LabelSource, DLDataset)
  • Generate the split.
    split_dl_dataset (DLDataset, TrainingPercent, ValidationPercent, [])

  • ** Preprocess the dataset ***

  • Create the output directory if it does not exist yet.
    file_exists (ExampleDataDir, FileExists)
    if (not FileExists)
    make_dir (ExampleDataDir)
    endif
  • Create preprocess parameters.
    create_dl_preprocess_param (‘classification’, ImageWidth, ImageHeight, ImageNumChannels, -127, 128, NormalizationType, DomainHandling, [], [], [], [], DLPreprocessParam)
  • Dataset directory for any outputs written by preprocess_dl_dataset.
    DataDirectory := DataDirectoryBaseName + ‘_’ + ImageWidth + ‘x’ + ImageHeight
  • Preprocess the dataset. This might take a few seconds.
    create_dict (GenParam)
    set_dict_tuple (GenParam, ‘overwrite_files’, true)
    preprocess_dl_dataset (DLDataset, DataDirectory, DLPreprocessParam, GenParam, DLDatasetFileName)
  • Store preprocess params separately in order to use it e.g. during inference.
    PreprocessParamFileBaseName := DataDirectory + ‘/dl_preprocess_param.hdict’
    write_dict (DLPreprocessParam, PreprocessParamFileBaseName, [], [])

  • ** Preview the preprocessed dataset ***

  • Before moving on to training, it is recommended to check the preprocessed dataset.
  • Display the DLSamples for 10 randomly selected train images.
    get_dict_tuple (DLDataset, ‘samples’, DatasetSamples)
    find_dl_samples (DatasetSamples, ‘split’, ‘train’, ‘match’, SampleIndices)
    tuple_shuffle (SampleIndices, ShuffledIndices)
    read_dl_samples (DLDataset, ShuffledIndices[0:9], DLSampleBatchDisplay)

create_dict (WindowHandleDict)
for Index := 0 to |DLSampleBatchDisplay| - 1 by 1
* Loop over samples in DLSampleBatchDisplay.
dev_display_dl_data (DLSampleBatchDisplay[Index], [], DLDataset, ‘classification_ground_truth’, [], WindowHandleDict)
Text := ‘Press Run (F5) to continue’
dev_disp_text (Text, ‘window’, ‘bottom’, ‘right’, ‘black’, [], [])
stop ()
endfor
*

  • Close windows that have been used for visualization.
    dev_close_window_dict (WindowHandleDict)

*检测电脑是否有GPU,如果无GPU则使用CPU训练
query_available_dl_devices ([‘runtime’,‘runtime’], [‘gpu’,‘cpu’], DLDeviceHandles)
if (|DLDeviceHandles| == 0)
throw (‘No supported device found to continue this example.’)
endif

  • Due to the filter used in query_available_dl_devices, the first device is a GPU, if available.
    DLDevice := DLDeviceHandles[0]
    get_dl_device_param (DLDevice, ‘type’, DLDeviceType)
    if (DLDeviceType == ‘cpu’)
    • The number of used threads may have an impact
    • on the training duration.
      NumThreadsTraining := 4
      set_system (‘thread_num’, NumThreadsTraining)
      endif

  • ** Set input and output paths ***

  • File path of the initialized model.
    ModelFileName := ‘pretrained_dl_classifier_compact.hdl’

  • File path of the preprocessed DLDataset.

  • Note: Adapt DataDirectory after preprocessing with another image size.
    DataDirectory := ExampleDataDir + ‘/dldataset_pill_300x300’
    DLDatasetFileName := DataDirectory + ‘/dl_dataset.hdict’
    DLPreprocessParamFileName := DataDirectory + ‘/dl_preprocess_param.hdict’

  • Output path of the best evaluated model.
    BestModelBaseName := ExampleDataDir + ‘/best_dl_model_classification’

  • Output path for the final trained model.
    FinalModelBaseName := ExampleDataDir + ‘/final_dl_model_classification’


  • ** Set basic parameters ***

  • The following parameters need to be adapted frequently.
  • Model parameters.
  • Batch size. In case this example is run on a GPU,
  • you can set BatchSize to ‘maximum’ and it will be
  • determined automatically.
    BatchSize := 64
  • Initial learning rate.
    InitialLearningRate := 0.001
  • Momentum should be high if batch size is small.
    Momentum := 0.9
  • Parameters used by train_dl_model.
  • Number of epochs to train the model.
    NumEpochs := 16
  • Evaluation interval (in epochs) to calculate evaluation measures on the validation split.
    EvaluationIntervalEpochs := 1
  • Change the learning rate in the following epochs, e.g. [4, 8, 12].
  • Set it to [] if the learning rate should not be changed.
    ChangeLearningRateEpochs := [4,8,12]
  • Change the learning rate to the following values, e.g. InitialLearningRate * [0.1, 0.01, 0.001].
  • The tuple has to be of the same length as ChangeLearningRateEpochs.
    ChangeLearningRateValues := InitialLearningRate * [0.1,0.01,0.001]

  • ** Set advanced parameters ***

  • The following parameters might need to be changed in rare cases.
  • Model parameter.
  • Set the weight prior.
    WeightPrior := 0.0005
  • Parameters used by train_dl_model.
  • Control whether training progress is displayed (true/false).
    EnableDisplay := true
  • Set a random seed for training.
    RandomSeed := 42
    set_system (‘seed_rand’, RandomSeed)
  • In order to obtain nearly deterministic training results on the same GPU
  • (system, driver, cuda-version) you could specify “cudnn_deterministic” as
  • “true”. Note, that this could slow down training a bit.
  • set_system (‘cudnn_deterministic’, ‘true’)
  • Set generic parameters of create_dl_train_param.
  • Please see the documentation of create_dl_train_param for an overview on all available parameters.
    GenParamName := []
    GenParamValue := []
  • Augmentation parameters.
  • If samples should be augmented during training, create the dict required by augment_dl_samples.
  • Here, we set the augmentation percentage and method.
    create_dict (AugmentationParam)
  • Percentage of samples to be augmented.
    set_dict_tuple (AugmentationParam, ‘augmentation_percentage’, 50)
  • Mirror images along row and column.
    set_dict_tuple (AugmentationParam, ‘mirror’, ‘rc’)
    GenParamName := [GenParamName,‘augment’]
    GenParamValue := [GenParamValue,AugmentationParam]
  • Change strategies.
  • It is possible to change model parameters during training.
  • Here, we change the learning rate if specified above.
    if (|ChangeLearningRateEpochs| > 0)
    create_dict (ChangeStrategy)
    • Specify the model parameter to be changed, here the learning rate.
      set_dict_tuple (ChangeStrategy, ‘model_param’, ‘learning_rate’)
    • Start the parameter value at ‘initial_value’.
      set_dict_tuple (ChangeStrategy, ‘initial_value’, InitialLearningRate)
    • Reduce the learning rate in the following epochs.
      set_dict_tuple (ChangeStrategy, ‘epochs’, ChangeLearningRateEpochs)
    • Reduce the learning rate to the following values.
      set_dict_tuple (ChangeStrategy, ‘values’, ChangeLearningRateValues)
    • Collect all change strategies as input.
      GenParamName := [GenParamName,‘change’]
      GenParamValue := [GenParamValue,ChangeStrategy]
      endif
  • Serialization strategies.
  • There are several options for saving intermediate models to disk (see create_dl_train_param).
  • Here, we save the best and the final model to the paths set above.
    create_dict (SerializationStrategy)
    set_dict_tuple (SerializationStrategy, ‘type’, ‘best’)
    set_dict_tuple (SerializationStrategy, ‘basename’, BestModelBaseName)
    GenParamName := [GenParamName,‘serialize’]
    GenParamValue := [GenParamValue,SerializationStrategy]
    create_dict (SerializationStrategy)
    set_dict_tuple (SerializationStrategy, ‘type’, ‘final’)
    set_dict_tuple (SerializationStrategy, ‘basename’, FinalModelBaseName)
    GenParamName := [GenParamName,‘serialize’]
    GenParamValue := [GenParamValue,SerializationStrategy]
  • Display parameters.
  • In this example, 20% of the training split are selected to display the
  • evaluation measure for the reduced training split during the training. A lower percentage
  • helps to speed up the evaluation/training. If the evaluation measure for the training split
  • shall not be displayed, set this value to 0 (default).
    SelectedPercentageTrainSamples := 20
  • Set the x-axis argument of the training plots.
    XAxisLabel := ‘epochs’
    create_dict (DisplayParam)
    set_dict_tuple (DisplayParam, ‘selected_percentage_train_samples’, SelectedPercentageTrainSamples)
    set_dict_tuple (DisplayParam, ‘x_axis_label’, XAxisLabel)
    GenParamName := [GenParamName,‘display’]
    GenParamValue := [GenParamValue,DisplayParam]

  • ** Read initial model and dataset ***

  • Check if all necessary files exist.
    check_data_availability (ExampleDataDir, DLDatasetFileName, DLPreprocessParamFileName)
  • Read in the model that was initialized during preprocessing.
    read_dl_model (ModelFileName, DLModelHandle)
  • Read in the preprocessed DLDataset file.
    read_dict (DLDatasetFileName, [], [], DLDataset)

  • ** Set model parameters ***

  • Set model hyper-parameters as specified in the settings above.
    set_dl_model_param (DLModelHandle, ‘learning_rate’, InitialLearningRate)
    set_dl_model_param (DLModelHandle, ‘momentum’, Momentum)
  • Set the class names for the model.
    get_dict_tuple (DLDataset, ‘class_names’, ClassNames)
    set_dl_model_param (DLModelHandle, ‘class_names’, ClassNames)
  • Get image dimensions from preprocess parameters and set them for the model.
    read_dict (DLPreprocessParamFileName, [], [], DLPreprocessParam)
    get_dict_tuple (DLPreprocessParam, ‘image_width’, ImageWidth)
    get_dict_tuple (DLPreprocessParam, ‘image_height’, ImageHeight)
    get_dict_tuple (DLPreprocessParam, ‘image_num_channels’, ImageNumChannels)
    set_dl_model_param (DLModelHandle, ‘image_dimensions’, [ImageWidth,ImageHeight,ImageNumChannels])
    if (BatchSize == ‘maximum’ and DLDeviceType == ‘gpu’)
    set_dl_model_param_max_gpu_batch_size (DLModelHandle, 100)
    else
    set_dl_model_param (DLModelHandle, ‘batch_size’, BatchSize)
    endif
  • When the batch size is determined, set the device.
    set_dl_model_param (DLModelHandle, ‘device’, DLDevice)
    if (|WeightPrior| > 0)
    set_dl_model_param (DLModelHandle, ‘weight_prior’, WeightPrior)
    endif
  • Set class weights to counteract unbalanced training data. In this example
  • we choose the default values, since the classes are evenly distributed in the dataset.
    tuple_gen_const (|ClassNames|, 1.0, ClassWeights)
    set_dl_model_param (DLModelHandle, ‘class_weights’, ClassWeights)

  • ** Train the model ***

  • Create training parameters.
    create_dl_train_param (DLModelHandle, NumEpochs, EvaluationIntervalEpochs, EnableDisplay, RandomSeed, GenParamName, GenParamValue, TrainParam)
  • Start the training by calling the training operator
  • train_dl_model_batch () within the following procedure.
    train_dl_model (DLDataset, DLModelHandle, TrainParam, 0, TrainResults, TrainInfos, EvaluationInfos)
  • Stop after the training has finished, before closing the windows.
    dev_disp_text (‘Press Run (F5) to continue’, ‘window’, ‘bottom’, ‘right’, ‘black’, [], [])
    stop ()
  • Close training windows.
    dev_close_window ()
    4.推理代码
    dev_update_off ()
    dev_close_window ()
    WindowWidth := 800
    WindowHeight := 600
    dev_open_window_fit_size (0, 0, WindowWidth, WindowHeight, -1, -1, WindowHandle)
    set_display_font (WindowHandle, 16, ‘mono’, ‘true’, ‘false’)
  • ** INFERENCE **

*检测电脑是否有GPU,如果无GPU则使用CPU推理
query_available_dl_devices ([‘runtime’,‘runtime’], [‘gpu’,‘cpu’], DLDeviceHandles)
if (|DLDeviceHandles| == 0)
throw (‘No supported device found to continue this example.’)
endif

  • Due to the filter used in query_available_dl_devices, the first device is a GPU, if available.
    DLDevice := DLDeviceHandles[0]

*总路径
ExampleDataDir := ‘D:/classify_pill_defects_data’

  • Dataset directory basename for any outputs written by preprocess_dl_dataset.
    DataDirectoryBaseName := ExampleDataDir + ‘/dldataset_pill’

  • File name of the dict containing parameters used for preprocessing.

  • Note: Adapt DataDirectory after preprocessing with another image size.
    DataDirectory := ExampleDataDir + ‘/dldataset_pill_300x300’
    PreprocessParamFileName := DataDirectory + ‘/dl_preprocess_param.hdict’

  • File name of the finetuned object detection model.
    RetrainedModelFileName := ExampleDataDir + ‘/best_dl_model_classification.hdl’

  • Batch Size used during inference.
    BatchSizeInference := 1


  • ** Inference ***

  • Check if all necessary files exist.
    check_data_availability (ExampleDataDir, PreprocessParamFileName, RetrainedModelFileName, false)
  • Read in the retrained model.
    read_dl_model (RetrainedModelFileName, DLModelHandle)
  • Set the batch size.
    set_dl_model_param (DLModelHandle, ‘batch_size’, BatchSizeInference)
  • Initialize the model for inference.
    set_dl_model_param (DLModelHandle, ‘device’, DLDevice)
  • Get the class names and IDs from the model.
    get_dl_model_param (DLModelHandle, ‘class_names’, ClassNames)
    get_dl_model_param (DLModelHandle, ‘class_ids’, ClassIDs)
  • Get the parameters used for preprocessing.
    read_dict (PreprocessParamFileName, [], [], DLPreprocessParam)
  • Create window dictionary for displaying results.
    create_dict (WindowHandleDict)
  • Create dictionary with dataset parameters necessary for displaying.
    create_dict (DLDataInfo)
    set_dict_tuple (DLDataInfo, ‘class_names’, ClassNames)
    set_dict_tuple (DLDataInfo, ‘class_ids’, ClassIDs)
  • Set generic parameters for visualization.
    create_dict (GenParam)
    set_dict_tuple (GenParam, ‘scale_windows’, 1.1)

list_files (‘E:/NG’, [‘files’,‘follow_links’], ImageFiles)
tuple_regexp_select (ImageFiles, [‘\.(tif|tiff|gif|bmp|jpg|jpeg|jp2|png|pcx|pgm|ppm|pbm|xwd|ima|hobj)$’,‘ignore_case’], ImageFiles)
for Index := 0 to |ImageFiles| - 1 by 1
read_image (ImageBatch, ImageFiles[Index])
gen_dl_samples_from_images (ImageBatch, DLSampleBatch)
preprocess_dl_samples (DLSampleBatch, DLPreprocessParam)
apply_dl_model (DLModelHandle, DLSampleBatch, [], DLResultBatch)
DLSample := DLSampleBatch[0]
DLResult := DLResultBatch[0]
*获取识别结果 参数:分类的结果,批处理中图像的索引,通用参数的名称,通用参数的值
get_dict_tuple (DLResult, ‘classification_class_ids’, ClassificationClassID)
get_dict_tuple (DLResult, ‘classification_class_names’, ClassificationClassName)
get_dict_tuple (DLResult, ‘classification_confidences’, ClassificationClassConfidence)
dev_display (ImageBatch)
Text := ‘预测类为: ’ + ClassificationClassName[0] + ’ 置信度:’+ClassificationClassConfidence[0]
dev_disp_text (Text, ‘window’, ‘top’, ‘left’, ‘red’, ‘box’, ‘false’)
stop ()
endfor
dev_close_window_dict (WindowHandleDict)

在这里插入图片描述

相关文章:

Halcon深度学习分类模型

1.Halcon20之后深度学习支持CPU训练模型,没有money买显卡的小伙伴有福了。但是缺点也很明显,就是训练速度超级慢,推理效果也没有GPU好,不过学习用足够。 2.分类模型是Halcon深度学习最简单的模型,可以用在物品分类&…...

洗地机哪种牌子好?洗地机排行榜前十名公布

洗地机市场上品牌琳琅满目,每个品牌都有其独特的魅力和优势。消费者在选择时,往往会根据自己的实际需求、预算以及对产品性能的期望来做出决策。因此,无论是哪个品牌的洗地机,只要能够满足用户的清洁需求,提供便捷的操…...

C++中的虚函数与多态机制如何工作?

在C中,虚函数和多态机制是实现面向对象编程的重要概念。 虚函数是在基类中声明的函数,可以在派生类中进行重写。当基类的指针或引用指向派生类的对象时,通过调用虚函数可以实现动态绑定,即在运行时确定要调用的函数。 多态是指通…...

《LeetCode热题100》---<哈希三道>

本篇博客讲解 LeetCode热题100道中的哈希篇中的三道题。分别是 1.第一道:两数之和(简单) 2.第二道:字母异位词分组(中等) 3.第三道:最长连续序列(中等) 第一道&#xff1…...

秒懂C++之string类(下)

目录 一.接口说明 1.1 erase 1.2 replace(最好别用) 1.3 find 1.4 substr 1.5 rfind 1.6 find_first_of 1.7 find_last_of 二.string类的模拟实现 2.1 构造 2.2 无参构造 2.3 析构 2.4.【】运算符 2.5 迭代器 2.6 打印 2.7 reserve扩容 …...

github简单地操作

1.调节字体大小 选择options 选择text 选择select 选择你需要的参数就可以了。 2.配置用户名和邮箱 桌面右键,选择git Bash Here git config --global user.name 用户名 git config --global user.email 邮箱名 3.用git实现代码管理的过程 下载别人的项目 git …...

模型改进-损失函数合集

模版 第一步在哪些地方做出修改: 228行 self.use_wiseiouTrue 230行 self.wiou_loss WiseIouLoss(ltypeMPDIoU, monotonousFalse, inner_iouTrue, focaler_iouFalse) 238行 wiou self.wiou_loss(pred_bboxes[fg_mask], target_bboxes[fg_mask], ret_iouFalse…...

C++模板(初阶)

1.引入 在之前的笔记中有提到:函数重载(特别是交换函数(Swap)的实现) void Swap(int& left, int& right) {int temp left;left right;right temp; } void Swap(double& left, double& right) {do…...

下面关于Date类的描述错误的一项是?

下面关于Date类的描述错误的一项是? A. java.util.Date类下有三个子类:java.sql.Date、java.sql.Timestamp、java.sql.Time; B. 利用SimpleDateFormat类可以对java.util.Date类进行格式化显示; C. 直接输出Date类对象就可以取得日…...

【Python面试题收录】Python编程基础练习题①(数据类型+函数+文件操作)

本文所有代码打包在Gitee仓库中https://gitee.com/wx114/Python-Interview-Questions 一、数据类型 第一题(str) 请编写一个Python程序,完成以下任务: 去除字符串开头和结尾的空格。使用逗号(","&#…...

C# Nmodbus,EasyModbusTCP读写操作

Nmodbus读写 两个Button控件分别为 读取和写入 分别使用控件的点击方法 ①引用第三方《NModbus4》2.1.0版本 全局 public SerialPort port new SerialPort("COM2", 9600, Parity.None, 8, (StopBits)1); ModbusSerialMaster master; public Form1() port.Open();…...

spark常用参数调优

目录 1.set spark.grouping.sets.reference.hivetrue;2.set spark.locality.wait.rack0s3.set spark.locality.wait0s;4.set spark.executor.memoryOverhead 2G;5.set spark.sql.shuffle.partitions 1000;6.set spark.shuffle.file.buffer 256k7. set spark.reducer.maxSizeInF…...

C#/WinFrom TCP通信+ 网线插拔检测+客服端异常掉线检测

Winfor Tcp通信(服务端) 今天给大家讲一下C# 关于Tcp 通信部分,这一块的教程网上一大堆,不过关于掉网,异常断开连接的这部分到是到是没有多少说明,有方法 不过基本上最多的两种方式(1.设置一个超时时间,2.…...

一篇文章掌握Python爬虫的80%

转载:一篇文章掌握Python爬虫的80% Python爬虫 Python 爬虫技术在数据采集和信息获取中有着广泛的应用。本文将带你掌握Python爬虫的核心知识,帮助你迅速成为一名爬虫高手。以下内容将涵盖爬虫的基本概念、常用库、核心技术和实战案例。 一、Python 爬虫…...

【用户会话信息在异步事件/线程池的传递】

用户会话信息在异步事件/线程池的传递 author:shengfq date:2024-07-29 version:1.0 背景: 同事写的一个代码功能,是在一个主线程中通过如下代码进行异步任务的执行,结果遇到了问题. 1.ThreadPool.execute(Runnable)启动一个子线程执行异步任务 2.applicationContext.publis…...

Java8: BigDecimal

Java8:BigDecimal 转两位小数的百分数-CSDN博客 BigDecimal 先做除法 然后取绝对值 在Java 8中,如果你想要对一个BigDecimal值进行除法操作,并随后取其绝对值,你可以通过组合divide方法和abs方法来实现这一目的。不过,需要注意的…...

苹果推送iOS 18.1带来Apple Intelligence预览

🦉 AI新闻 🚀 苹果推送iOS 18.1带来Apple Intelligence预览 摘要:苹果向iPhone和iPad用户推送iOS 18.1和iPadOS 18.1开发者预览版Beta更新,带来“Apple Intelligence”预览。目前仅支持M1芯片或更高版本的设备。Apple Intellige…...

testRigor-基于人工智能驱动的无代码自动化测试平台

1、testRigor介绍 简单来说,testRigor是一款基于人工智能驱动的无代码自动化测试平台,它能够通过分析应用的行为模式,智能地生成测试用例,并自动执行这些测试,无需人工编写测试脚本。可以用于Web、移动、API和本机桌面…...

hadoop学习(一)

一.hadoop概述 1.1hadoop优势 1)高可靠性:Hadoop底层维护多个数据副本,即使Hadoop某个计算元素或存储出现故障,也不会导致数据的丢失。 2)高扩展性:在集群间分配任务数据,可方便扩展数以千计…...

Linux性能监控:sar的可视化方案

在当今的IT环境中,系统性能监控是确保应用程序稳定运行和快速响应问题的关键。Linux作为一种广泛使用的操作系统,拥有多种性能监控工具,其中sar(System Activity Reporter)因其全面性和灵活性被广泛采用。然而&#xf…...

多云管理“拦路虎”:深入解析网络互联、身份同步与成本可视化的技术复杂度​

一、引言:多云环境的技术复杂性本质​​ 企业采用多云策略已从技术选型升维至生存刚需。当业务系统分散部署在多个云平台时,​​基础设施的技术债呈现指数级积累​​。网络连接、身份认证、成本管理这三大核心挑战相互嵌套:跨云网络构建数据…...

Cursor实现用excel数据填充word模版的方法

cursor主页:https://www.cursor.com/ 任务目标:把excel格式的数据里的单元格,按照某一个固定模版填充到word中 文章目录 注意事项逐步生成程序1. 确定格式2. 调试程序 注意事项 直接给一个excel文件和最终呈现的word文件的示例,…...

springboot 百货中心供应链管理系统小程序

一、前言 随着我国经济迅速发展,人们对手机的需求越来越大,各种手机软件也都在被广泛应用,但是对于手机进行数据信息管理,对于手机的各种软件也是备受用户的喜爱,百货中心供应链管理系统被用户普遍使用,为方…...

51c自动驾驶~合集58

我自己的原文哦~ https://blog.51cto.com/whaosoft/13967107 #CCA-Attention 全局池化局部保留,CCA-Attention为LLM长文本建模带来突破性进展 琶洲实验室、华南理工大学联合推出关键上下文感知注意力机制(CCA-Attention),…...

(十)学生端搭建

本次旨在将之前的已完成的部分功能进行拼装到学生端,同时完善学生端的构建。本次工作主要包括: 1.学生端整体界面布局 2.模拟考场与部分个人画像流程的串联 3.整体学生端逻辑 一、学生端 在主界面可以选择自己的用户角色 选择学生则进入学生登录界面…...

SciencePlots——绘制论文中的图片

文章目录 安装一、风格二、1 资源 安装 # 安装最新版 pip install githttps://github.com/garrettj403/SciencePlots.git# 安装稳定版 pip install SciencePlots一、风格 简单好用的深度学习论文绘图专用工具包–Science Plot 二、 1 资源 论文绘图神器来了:一行…...

三维GIS开发cesium智慧地铁教程(5)Cesium相机控制

一、环境搭建 <script src"../cesium1.99/Build/Cesium/Cesium.js"></script> <link rel"stylesheet" href"../cesium1.99/Build/Cesium/Widgets/widgets.css"> 关键配置点&#xff1a; 路径验证&#xff1a;确保相对路径.…...

DockerHub与私有镜像仓库在容器化中的应用与管理

哈喽&#xff0c;大家好&#xff0c;我是左手python&#xff01; Docker Hub的应用与管理 Docker Hub的基本概念与使用方法 Docker Hub是Docker官方提供的一个公共镜像仓库&#xff0c;用户可以在其中找到各种操作系统、软件和应用的镜像。开发者可以通过Docker Hub轻松获取所…...

在HarmonyOS ArkTS ArkUI-X 5.0及以上版本中,手势开发全攻略:

在 HarmonyOS 应用开发中&#xff0c;手势交互是连接用户与设备的核心纽带。ArkTS 框架提供了丰富的手势处理能力&#xff0c;既支持点击、长按、拖拽等基础单一手势的精细控制&#xff0c;也能通过多种绑定策略解决父子组件的手势竞争问题。本文将结合官方开发文档&#xff0c…...

leetcodeSQL解题:3564. 季节性销售分析

leetcodeSQL解题&#xff1a;3564. 季节性销售分析 题目&#xff1a; 表&#xff1a;sales ---------------------- | Column Name | Type | ---------------------- | sale_id | int | | product_id | int | | sale_date | date | | quantity | int | | price | decimal | -…...