当前位置: 首页 > news >正文

数据集相关类代码回顾理解 | utils.make_grid\list comprehension\np.transpose

目录

utils.make_grid

list comprehension

np.transpose


utils.make_grid

x_grid=utils.make_grid(x_grid, nrow=4, padding=2)

make_grid 函数来自torchvision的utils模块,用于图像数据可视化,将一批图像排列成一个网格。

x_grid:四维图像张量,形状为 (N, C, H, W),其中 N图像数量,C通道数,H 高度,W宽度。

nrow=4:网格中的行数为4,默认值为 8。

padding:网格中每个图像周围的填充大小,单位像素。默认值为 0。

list comprehension

y_test=[y for _,y in test_ds]

list comprehension列表推导式的基础应用,从 test_ds 数据集中提取目标(标签)。遍历 test_ds 中的每个样本,并提取了每个样本的目标值 y。test_ds作为一个数据集对象,通常包含特征目标两种元素。如果仅对数据集中的目标值感兴趣,便可使用 _ 来忽略特征,仅提取目标值。

np.transpose

npimg_tr=np.transpose(npimg, (1,2,0))

使用 NumPy 库的 transpose 函数来改变数组的维度顺序,例如将图像的维度从(C,H,W)转换为(H,W,C)。当然,在次之前需要先将图像转换为numpy数组格式,可以通过npimg = img.numpy()实现。经常需要改变图像维度是因为许多深度学习库(如 PyTorch 和 TensorFlow)期望图像数据的维度顺序为 (C,H,W),而许多图像处理库(如 OpenCV 和 PIL)则使用 (H,W,C) 作为默认的维度顺序。

相关文章:

数据集相关类代码回顾理解 | utils.make_grid\list comprehension\np.transpose

目录 utils.make_grid list comprehension np.transpose utils.make_grid x_gridutils.make_grid(x_grid, nrow4, padding2) make_grid 函数来自torchvision的utils模块,用于图像数据可视化,将一批图像排列成一个网格。 x_grid:四维图像…...

React前端面试每日一试 3.状态(State)和属性(Props)的区别是什么?

加粗样式先简单介绍一下Props和State的特点 Props(属性) Props(Properties)是React组件间传递数据的一种方式。它们是从父组件传递给子组件的只读数据,子组件不能修改这些数据。Props主要用于配置组件,使…...

射灯怎么安装才好看,射灯安装防踩坑

射灯安装的5个尺寸,不懂容易踩坑      你得选好角度,算好安装距离      为了防止我们花了钱却装不出效果      1,射灯是可以调角度的,一般选24度和36度就行      像小的装饰画可以选24度,大的装饰画选36度      也就是重点照明选24,洗墙和打造小山丘36度  …...

Mojo变量详解

变量是一个保存值或对象的名称。Mojo中的所有变量都是可变的 - 它们的值可以改变。(如果您想定义一个在运行时无法更改的常量值,请参见alias关键字。) Mojo曾经支持使用let关键字来声明不可变变量。为了简化语言,并出于其他原因,已经将其移除 ( 为何移除let)。为了简化…...

ElasticSearch 面试题及答案整理,最新面试题

Elasticsearch中的倒排索引是什么?它如何工作? 倒排索引是Elasticsearch中用于快速全文搜索的关键数据结构。它的工作原理包括: 1、索引创建: 对文档中的每个唯一单词创建一个索引条目。 2、文档列表: 每个索引条目都指向包含该单词的文档列表。 3、快速查找: 在搜索时,…...

Java基本语法学习的案例练习

本文是在学习过C语言后,开始进行Java学习时,对于基本语法的一些案例练习。案例内容来自B站黑马编程课 1.HelloWorld 问题介绍;请编写程序输出“HelloWorld”. public class HelloWorld { public static void main(String[] args) { System.out.print…...

FPGA实现LCD12864控制

目录 注意! a) 本工程采用野火征途PRO开发板,外接LCD12864部件进行测试。 b) 有偿提供代码!!!可以定制功能!!!有需要私信!!! c) 本文测试采用…...

mysql 批量执行sql语句脚本

有时候我们需要批量执行多个数据库的创建和数据创建执行可以通过下面脚本批量创建和执行脚本。我们只需要在sql命令行或者客户端执行下面一个脚本批量创建执行多个库的创建和执行 xxxxinit.sql create user root% identified by test; mysql -h 192.168.17.7 -u root -p mysq…...

餐饮连锁加盟的网页UI,如果不大气,谁能相信你的品牌力

...

【Git】Git概述

一、Git的基本概念和特点 基本概念: 仓库(Repository):Git存储代码的基本单位,包含项目的所有文件和历史提交记录。Git支持本地仓库和远程仓库,本地仓库存储在开发者的计算机上,而远程仓库通常…...

【图解网络】学习记录

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 TCP/IP 网络模型有哪几层?键入网址到网页显示,期间发生了什么?Linux 系统是如何收发网络包的?NAPIHTTP 是什么&#…...

【Vulnhub系列】Vulnhub_Seattle_003靶场渗透(原创)

【Vulnhub系列靶场】Vulnhub_Seattle_003靶场渗透 原文转载已经过授权 原文链接:Lusen的小窝 - 学无止尽,不进则退 (lusensec.github.io) 一、环境准备 1、从百度网盘下载对应靶机的.ova镜像 2、在VM中选择【打开】该.ova 3、选择存储路径&#xff0…...

java: 错误: 无效的源发行版:17

错误现象: java: 错误: 无效的源发行版:17 背景:在配置一个springboot项目时候,报出这个错误,错误提示信息很简单,很模糊。 排查:百度后,推测大概率就是pom文件的配置问题&#xf…...

【Python机器学习】k-近邻算法简单实践——识别手写数字

为了简化理解,需要识别的数字已经使用图形处理软件,处理成具有相同的色彩和大小32*32的黑白图像,并转换成文本格式 准备数据:将图像转换为测试向量 实际图像存储在trainingDigits的2000个例子和testDigits中的900个测试数据 我们…...

Linux源码阅读笔记14-IO体系结构与访问设备

IO体系结构 与外设通信通常称为输入输出,一般缩写为I/O。在实现外设IO的时候,内核必须处理三个可能出现的问题: 必须根据具体的设备类型和模型,使用各种方法对硬件寻址。内核必须向用户应用程序和系统工具提供访问各种设备的方法…...

只出现一次的数字-位运算

题目描述&#xff1a; 个人题解&#xff1a; 代码实现&#xff1a; class Solution { public:int singleNumber(vector<int>& nums) {int ret 0;for (auto e: nums) ret ^ e;return ret;} };复杂度分析&#xff1a; 时间复杂度&#xff1a;O(n)&#xff0c;其中 n…...

pyqt designer使用spliter

1、在designer界面需要使用spliter需要父界面不使用布局&#xff0c;减需要分割两个模块选中&#xff0c;再点击spliter分割 2、在分割后&#xff0c;再对父界面进行布局设置 3、对于两边需要不等比列放置的&#xff0c;需要套一层 group box在最外层进行分割...

【ROS 最简单教程 002/300】ROS 集成开发环境安装 (虚拟机版): Noetic

&#x1f497; 有遇到安装问题可以留言呀 ~ 当时踩了挺多坑&#xff0c;能帮忙解决的我会尽力 &#xff01; 1. 安装操作系统环境 Linux ❄️ VM / VirtualBox Ubuntu20.04 &#x1f449; 保姆级图文安装教程指路&#xff0c;有经验的话 可以用如下资源自行安装 ITEMREFERENCE…...

防洪评价报告编制方法与水流数学模型建模技术

原文链接&#xff1a;防洪评价报告编制方法与水流数学模型建模技术https://mp.weixin.qq.com/s?__bizMzUzNTczMDMxMg&mid2247610610&idx2&sn432d30cb40ec36160d635603c7f22c96&chksmfa827115cdf5f803ddcaa03a21e3721d6949d6a336062bb38170e3f9d5bd4d391cc36cc…...

【Python学习手册(第四版)】学习笔记10-语句编写的通用规则

个人总结难免疏漏&#xff0c;请多包涵。更多内容请查看原文。本文以及学习笔记系列仅用于个人学习、研究交流。 本文较简单&#xff0c;5-10分钟即可阅读完成。介绍Python基本过程语句并讨论整体语法模型通用规则&#xff08;冒号、省略、终止、缩进、其他特殊情况&#xff0…...

dedecms 织梦自定义表单留言增加ajax验证码功能

增加ajax功能模块&#xff0c;用户不点击提交按钮&#xff0c;只要输入框失去焦点&#xff0c;就会提前提示验证码是否正确。 一&#xff0c;模板上增加验证码 <input name"vdcode"id"vdcode" placeholder"请输入验证码" type"text&quo…...

linux arm系统烧录

1、打开瑞芯微程序 2、按住linux arm 的 recover按键 插入电源 3、当瑞芯微检测到有设备 4、松开recover按键 5、选择升级固件 6、点击固件选择本地刷机的linux arm 镜像 7、点击升级 &#xff08;忘了有没有这步了 估计有&#xff09; 刷机程序 和 镜像 就不提供了。要刷的时…...

vue3 定时器-定义全局方法 vue+ts

1.创建ts文件 路径&#xff1a;src/utils/timer.ts 完整代码&#xff1a; import { onUnmounted } from vuetype TimerCallback (...args: any[]) > voidexport function useGlobalTimer() {const timers: Map<number, NodeJS.Timeout> new Map()// 创建定时器con…...

ardupilot 开发环境eclipse 中import 缺少C++

目录 文章目录 目录摘要1.修复过程摘要 本节主要解决ardupilot 开发环境eclipse 中import 缺少C++,无法导入ardupilot代码,会引起查看不方便的问题。如下图所示 1.修复过程 0.安装ubuntu 软件中自带的eclipse 1.打开eclipse—Help—install new software 2.在 Work with中…...

大语言模型(LLM)中的KV缓存压缩与动态稀疏注意力机制设计

随着大语言模型&#xff08;LLM&#xff09;参数规模的增长&#xff0c;推理阶段的内存占用和计算复杂度成为核心挑战。传统注意力机制的计算复杂度随序列长度呈二次方增长&#xff0c;而KV缓存的内存消耗可能高达数十GB&#xff08;例如Llama2-7B处理100K token时需50GB内存&a…...

Reasoning over Uncertain Text by Generative Large Language Models

https://ojs.aaai.org/index.php/AAAI/article/view/34674/36829https://ojs.aaai.org/index.php/AAAI/article/view/34674/36829 1. 概述 文本中的不确定性在许多语境中传达,从日常对话到特定领域的文档(例如医学文档)(Heritage 2013;Landmark、Gulbrandsen 和 Svenevei…...

R语言速释制剂QBD解决方案之三

本文是《Quality by Design for ANDAs: An Example for Immediate-Release Dosage Forms》第一个处方的R语言解决方案。 第一个处方研究评估原料药粒径分布、MCC/Lactose比例、崩解剂用量对制剂CQAs的影响。 第二处方研究用于理解颗粒外加硬脂酸镁和滑石粉对片剂质量和可生产…...

08. C#入门系列【类的基本概念】:开启编程世界的奇妙冒险

C#入门系列【类的基本概念】&#xff1a;开启编程世界的奇妙冒险 嘿&#xff0c;各位编程小白探险家&#xff01;欢迎来到 C# 的奇幻大陆&#xff01;今天咱们要深入探索这片大陆上至关重要的 “建筑”—— 类&#xff01;别害怕&#xff0c;跟着我&#xff0c;保准让你轻松搞…...

OD 算法题 B卷【正整数到Excel编号之间的转换】

文章目录 正整数到Excel编号之间的转换 正整数到Excel编号之间的转换 excel的列编号是这样的&#xff1a;a b c … z aa ab ac… az ba bb bc…yz za zb zc …zz aaa aab aac…; 分别代表以下的编号1 2 3 … 26 27 28 29… 52 53 54 55… 676 677 678 679 … 702 703 704 705;…...

面试高频问题

文章目录 &#x1f680; 消息队列核心技术揭秘&#xff1a;从入门到秒杀面试官1️⃣ Kafka为何能"吞云吐雾"&#xff1f;性能背后的秘密1.1 顺序写入与零拷贝&#xff1a;性能的双引擎1.2 分区并行&#xff1a;数据的"八车道高速公路"1.3 页缓存与批量处理…...