层次特征的尺度艺术:sklearn中的缩放技术
层次特征的尺度艺术:sklearn中的缩放技术
在机器学习中,特征缩放(Feature Scaling)是数据预处理的重要步骤,尤其对于基于距离的算法,如K-近邻(KNN)和支持向量机(SVM)。对于具有层次结构的数据,如文本数据或分类标签,特征缩放需要特别的方法来保持数据的内在结构。本文将详细介绍如何在sklearn中进行分层特征的缩放,并提供详细的代码示例。
1. 特征缩放基础
特征缩放是将数据调整到一个统一的尺度,以消除不同量纲和数值范围的影响。
1.1 常用缩放方法
- 最小-最大缩放(Min-Max Scaling):将特征缩放到给定的[a, b]区间内。
- Z得分缩放(Standardization):使特征具有零均值和单位方差。
- 最大绝对值缩放(MaxAbs Scaling):将特征缩放到[-1, 1]区间内。
1.2 缩放的重要性
- 提高算法性能:某些算法对特征的尺度敏感。
- 避免数值问题:防止计算过程中的数值溢出或下溢。
2. sklearn中的分层特征缩放方法
2.1 使用MinMaxScaler
MinMaxScaler可以将特征缩放到指定的数值区间,默认为[0, 1]。
from sklearn.preprocessing import MinMaxScaler# 假设X是特征数据
scaler = MinMaxScaler()
X_scaled = scaler.fit_transform(X)
2.2 使用StandardScaler
StandardScaler进行Z得分缩放,使特征具有零均值和单位方差。
from sklearn.preprocessing import StandardScalerscaler = StandardScaler()
X_scaled = scaler.fit_transform(X)
2.3 使用MaxAbsScaler
MaxAbsScaler将特征缩放到[-1, 1]区间内。
from sklearn.preprocessing import MaxAbsScalerscaler = MaxAbsScaler()
X_scaled = scaler.fit_transform(X)
3. 处理分层特征的特殊考虑
3.1 文本数据的缩放
对于文本数据,通常先使用CountVectorizer或TfidfVectorizer转换为数值特征,然后进行缩放。
from sklearn.feature_extraction.text import TfidfVectorizer# 假设X是文本数据
vectorizer = TfidfVectorizer()
X_vectorized = vectorizer.fit_transform(X)# 使用StandardScaler进行缩放
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X_vectorized)
3.2 分类标签的缩放
对于分类标签,可以使用LabelEncoder将标签转换为数值,然后进行缩放。
from sklearn.preprocessing import LabelEncoderencoder = LabelEncoder()
X_encoded = encoder.fit_transform(X)# 使用MinMaxScaler进行缩放
scaler = MinMaxScaler()
X_scaled = scaler.fit_transform(X_encoded)
4. 缩放方法的选择和应用
4.1 根据算法需求选择缩放方法
不同的机器学习算法可能对特征的尺度有不同的要求。
4.2 缩放对模型性能的影响
合适的特征缩放可以显著提高模型的性能和泛化能力。
4.3 保持数据的内在结构
在缩放过程中,注意保持数据的内在层次结构和关系。
5. 结论
分层特征的缩放是数据预处理中的重要环节。通过本文的介绍,你应该对如何在sklearn中进行分层特征缩放有了深入的理解。记住,合理选择和应用特征缩放方法可以显著提高模型的性能和准确性。
希望本文能够帮助你在特征工程的道路上更进一步,如果你在实践中遇到任何问题,欢迎与我们交流。让我们一起探索机器学习的深度,解锁数据的无限可能。
相关文章:
层次特征的尺度艺术:sklearn中的缩放技术
层次特征的尺度艺术:sklearn中的缩放技术 在机器学习中,特征缩放(Feature Scaling)是数据预处理的重要步骤,尤其对于基于距离的算法,如K-近邻(KNN)和支持向量机(SVM&…...
Chapter 21 深入理解JSON
欢迎大家订阅【Python从入门到精通】专栏,一起探索Python的无限可能! 文章目录 前言一、JSON数据格式1. 什么是JSON?2. JSON数据的格式 二、JSON格式数据转化三、格式化JSON数据的在线工具 前言 在当今数据驱动的世界中,JSON&…...
【C++高阶数据结构】红黑树:全面剖析与深度学习
目录 🚀 前言:红黑树与AVL树的比较一: 🔥 红黑树的概念二: 🔥 红黑树的性质 三: 🔥 红黑树节点的定义和结构🚀 3.1 基本元素🚀 3.2 节点颜色🚀 3.…...
前端基于 axios 实现批量任务调度管理器 demo
一、背景介绍 这是一个基于 axios 实现的批量任务调度管理器的 demo。它使用了axios、promise 等多种技术和原理来实现批量处理多个异步请求,并确保所有请求都能正确处理并报告其状态。 假设有一个场景:有一个任务列表,有单个任务的处理功能…...
Docker容器下面home assistant忘记账号密码怎么重置?
环境: docker ha 问题描述: Docker容器下面home assistant忘记账号密码怎么重置? 解决方案: 你可以按照以下步骤来找回或重置密码: 方法一 (未解决) 停止并删除当前的Home Assistant容器(确保你已经保…...
CTF-NSSCTF[GKCTF 2021]
[GKCTF 2021]easycms 考察: 用扫描工具扫描目录,扫描到后台登录界面/admin.php 题目提示了密码是五位弱口令,试了试弱口令admin和12345直接成功了 任意文件下载 点击设计-->主题然后随便选择一个主题,点击自定义࿰…...
MSA+抑郁症模型总结(一)(论文复现)
MSA抑郁症模型总结(一)(论文复现) 本文所涉及所有资源均在传知代码平台可获取 文章目录 MSA抑郁症模型总结(一)(论文复现)情感分析在多场景的应用一、概述二、论文地址三、研究背景四…...
STM32智能农业灌溉系统教程
目录 引言环境准备智能农业灌溉系统基础代码实现:实现智能农业灌溉系统 4.1 数据采集模块 4.2 数据处理与分析模块 4.3 通信与网络系统实现 4.4 用户界面与数据可视化应用场景:农业监测与优化问题解决方案与优化收尾与总结 1. 引言 智能农业灌溉系统通…...
MySQL存储引擎和
MySQL存储引擎 在数据库中保存的是一张张有着千丝万缕关系的表,所以表设计的好坏,将直接影响着整个数据库。而在设计表的时候,最关注的一个问题是使用什么存储引擎。MySQL中的数据用各种不同的技术存储在文件(或者内存)中。这些技术中的每一种…...
Eclipse 主网向开发者开放
摘要:Eclipse 基金会宣布,Eclipse 主网已经向开发者开放。在接下来几周的时间里,Eclipse 将邀请开发者在主网上部署项目,并参加黑客马拉松活动——“Total Eclipse Challenge”。 Eclipse 是首个基于以太坊的 SVM Layer2 方案&am…...
国内NAT服务器docker方式搭建rustdesk服务
前言 如果遇到10054,就不要设置id服务器!!! 由于遇到大带宽,但是又贵,所以就NAT的啦,但是只有ipv4共享和一个ipv6,带宽50MB(活动免费会升130MB~) https://bigchick.xyz/aff.php?aff322 月付-5 循环 :CM-CQ-Monthly-5 年付-60循环:CM-CQ-Annually-60官方…...
锅总浅析链路追踪技术
链路追踪是什么?常用的链路追踪工具有哪些?它们的异同、架构、工作流程及关键指标有哪些?希望读完本文能帮您解答这些疑惑! 一、链路追踪简介 链路追踪技术(Distributed Tracing)是一种用于监控和分析分布…...
为什么阿里开发手册不建议使用Date类?
在日常编码中,基本上99%的项目都会有一个DateUtil工具类,而时间工具类里用的最多的就是java.util.Date。 大家都这么写,这还能有问题?? 当你的“默认常识”出现问题,这个打击,就是毁灭性的。 …...
中间层 k8s(Kubernetes) 到底是什么,架构是怎么样的?
你是一个程序员,你用代码写了一个博客应用服务,并将它部署在了云平台上。 但应用服务太过受欢迎,访问量太大,经常会挂。 所以你用了一些工具自动重启挂掉的应用服务,并且将应用服务部署在了好几个服务器上,…...
【CTFWP】ctfshow-web40
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 题目介绍:题目分析:payload:payload解释:payload2:payload2解释:flag 题目介绍: …...
项目实战1(30小时精通C++和外挂实战)
项目实战1(30小时精通C和外挂实战) 01-MFC1-图标02-MFC2-按钮、调试、打开网页05-MFC5-checkbox及按钮绑定对象06--文件格式、OD序列号08-暴力破解09-CE10-秒杀僵尸 01-MFC1-图标 这个外挂只针对植物大战僵尸游戏 开发这个外挂,首先要将界面…...
百日筑基第三十六天
今日论道还算顺利,只可惜感到也没学到什么东西。晚些时候师祖问话,主要是来这边之后有什么困难之类,好像也没遇到需要他来帮我解决的困难,于是问了些修炼方法之类。...
MySQL: ALTER
正文 在数据库管理系统(DBMS)中,DDL(Data Definition Language)、DCL(Data Control Language)、和 DML(Data Manipulation Language)是三种主要的SQL(Struct…...
微前端技术预研 - bit初体验
1.关于什么是微前端以及微前端的发展, 当前主流框架以及实现技术等,可参考这篇总结(非常全面), 微前端总结:目录详见下图 本文内容主要针对bit框架的实时思路以及具体使用。 1.什么是Bit? Bit 是可组合软件的构建…...
对象关系映射---ORM
一、什么是ORM? ORM(Object Relational Mapping),即对象关系映射,是一种程序设计技术,用于在面向对象编程语言中实现对象和关系型数据库之间的映射。 二、ORM是干什么的? ORM 的主要目的是简…...
Docker 离线安装指南
参考文章 1、确认操作系统类型及内核版本 Docker依赖于Linux内核的一些特性,不同版本的Docker对内核版本有不同要求。例如,Docker 17.06及之后的版本通常需要Linux内核3.10及以上版本,Docker17.09及更高版本对应Linux内核4.9.x及更高版本。…...
黑马Mybatis
Mybatis 表现层:页面展示 业务层:逻辑处理 持久层:持久数据化保存 在这里插入图片描述 Mybatis快速入门  B:十亿(Billion) 1 B 1000 M 1B 1000M 1B1000M 参数存储精度 模型参数是固定的,但是一个参数所表示多少字节不一定,需要看这个参数以什么…...
c++ 面试题(1)-----深度优先搜索(DFS)实现
操作系统:ubuntu22.04 IDE:Visual Studio Code 编程语言:C11 题目描述 地上有一个 m 行 n 列的方格,从坐标 [0,0] 起始。一个机器人可以从某一格移动到上下左右四个格子,但不能进入行坐标和列坐标的数位之和大于 k 的格子。 例…...
Java 加密常用的各种算法及其选择
在数字化时代,数据安全至关重要,Java 作为广泛应用的编程语言,提供了丰富的加密算法来保障数据的保密性、完整性和真实性。了解这些常用加密算法及其适用场景,有助于开发者在不同的业务需求中做出正确的选择。 一、对称加密算法…...
【OSG学习笔记】Day 16: 骨骼动画与蒙皮(osgAnimation)
骨骼动画基础 骨骼动画是 3D 计算机图形中常用的技术,它通过以下两个主要组件实现角色动画。 骨骼系统 (Skeleton):由层级结构的骨头组成,类似于人体骨骼蒙皮 (Mesh Skinning):将模型网格顶点绑定到骨骼上,使骨骼移动…...
【JavaSE】绘图与事件入门学习笔记
-Java绘图坐标体系 坐标体系-介绍 坐标原点位于左上角,以像素为单位。 在Java坐标系中,第一个是x坐标,表示当前位置为水平方向,距离坐标原点x个像素;第二个是y坐标,表示当前位置为垂直方向,距离坐标原点y个像素。 坐标体系-像素 …...
JS设计模式(4):观察者模式
JS设计模式(4):观察者模式 一、引入 在开发中,我们经常会遇到这样的场景:一个对象的状态变化需要自动通知其他对象,比如: 电商平台中,商品库存变化时需要通知所有订阅该商品的用户;新闻网站中࿰…...
VM虚拟机网络配置(ubuntu24桥接模式):配置静态IP
编辑-虚拟网络编辑器-更改设置 选择桥接模式,然后找到相应的网卡(可以查看自己本机的网络连接) windows连接的网络点击查看属性 编辑虚拟机设置更改网络配置,选择刚才配置的桥接模式 静态ip设置: 我用的ubuntu24桌…...
【分享】推荐一些办公小工具
1、PDF 在线转换 https://smallpdf.com/cn/pdf-tools 推荐理由:大部分的转换软件需要收费,要么功能不齐全,而开会员又用不了几次浪费钱,借用别人的又不安全。 这个网站它不需要登录或下载安装。而且提供的免费功能就能满足日常…...
